Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Structure design and motion control of parallel platform driven by pneumatic muscles and air cylinder
TAO Guo-liang, ZUO He, LIU Hao
1.Department of Zhejiang University, Hangzhou 310027, China
Download:   PDF(889KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to overcome the shortcomings of platforms driven by air cylinders such as low stiffness and controlling complexity, a parallel platform driven by three pneumatic muscles and one air cylinder was designed. The platform had three degrees of freedom, namely roll, pitch and heave. The stiffness of the parallel platform was controlled only by the air cylinder, while the posture was controlled by three pneumatic muscles, so the controller could be easily designed separately. Based on the modeling analysis of the parallel platform, a control strategy which separately controlled the air cylinder and pneumatic muscles was employed. To overcome the limitation caused by the coupling and nonlinear characteristics of pneumatic muscles, an adaptive robust controller (ARC) was designed for posture controlling of the parallel pneumatic platform. Simulation results show that the proposed ARC controller can achieve a high level of precision of trajectory tracking motion control. With the ability of online parameter identification, the ARC controller is able to modify the nonlinear compensation part based on the identification results. The robustness of the ARC controller is also verified in simulation experiments.



Published: 26 December 2015
CLC:  TP 273  
  TH 138  
Cite this article:

TAO Guo-liang, ZUO He, LIU Hao. Structure design and motion control of parallel platform driven by pneumatic muscles and air cylinder. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 821-828.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2015.05.002     OR     http://www.zjujournals.com/eng/Y2015/V49/I5/821


气动肌肉-气缸并联平台结构设计及位姿控制

为改进传统气缸驱动并联平台刚度低、难以控制的缺点,提出一种由3根气动肌肉和一个气缸混合驱动的并联平台.该平台具有横摇、纵摇、升沉3个方向上的自由度,其中由气缸控制的平台等效刚度控制系统和由3根气动肌肉控制的平台位姿控制系统自然分离,降低了控制器的设计难度.在对并联平台系统进行建模分析的基础上,采用气缸与气动肌肉控制相对独立的控制策略,针对气动肌肉强耦合、高度非线性的力学特性,设计一种自适应鲁棒控制器对并联平台的运动进行位姿控制.仿真结果表明,该控制器能够获得高精度的平台位姿轨迹跟踪控制效果,其中在线参数辨识部分能够对非线性模型补偿算法进行实时修正,同时控制器具有良好的鲁棒性.

[1] MENG Wei, ZHOU Zu-de, LIU Quan, et al. A practical fuzzy adaptive control strategy for multi-DOF parallel robot [C]∥Proceedings of the 2nd International Symposium on Computer, Communication, Control and Automation (ISCCCA-13). Paris: Atlantis Press, 2013: 620-623.
[2] DASGUPTA B, MRUTHYUNJAYA T S. The Stewart platform manipulator: A review [J]. Mechanism and Machine Theory, 2000, 35: 1540.
[3] 武卫, 王占林. 基于小脑模型神经网络的气动六自由度并联平台的复合控制方法研究[J]. 机械科学与技术. 2008, 27(6): 748-751.
WU Wei, WANG Zhan-lin. A compound control method for a six-DOF parallel pneumatic manipulator based on CMAC networks [J]. Mechanical Science and Technology for Aerospace Engineering, 2008, 27(6): 748-751.
[4] 傅晓云, 方敏, 李宝仁. 气动人工肌肉刚度特性的分析[J]. 机床与液压, 2007, 35(2): 109-111.
FU Xiao-yun, FANG Min, LI Bao-ren. Theoretic analysis of stiffness characteristics of the pneumatic muscle actuator [J]. Machine Tool & Hydraulics, 2007, 35(2): 109-111.
[5] 施光林, 沈伟. 气动人工肌肉并联平台自适应模糊CMAC姿态跟踪控制[J]. 中国机械工程, 2012, 23(2): 171-176.
SHI Guang-lin, SHEN Wei. Adaptive fuzzy CMAC position tracking control of parallel platform based on pneumatic artificial muscles [J]. China Mechanical Engineering, 2012, 23(2): 171-176.
[6] JAMWAL P K, XIE Sheng-quan, AW K C. Design analysis of a pneumatic muscle driven wearable parallel robot for anlde joint rehabilitation [C]∥ Mechatronics and Embedded Systems and Applications (MESA).Qingdao: IEEE, 2010: 403-408.
[7] TAO Guo-liang, ZHU Xiao-cong, YAO Bin, et al. Adaptive robust posture control of a pneumatic muscles driven parallel manipulator with redundancy [C]∥Proceedings of the 2007 American Control Conference.New York City,USA: IEEE, 2007: 3409-3413.
[8] 朱笑丛, 陶国良. 气动人工肌肉伺服平台的建模. 浙江大学学报:工学版 [J], 2004, 38(8): 1056-1060.
ZHU Xiao-cong, TAO Guo-liang. Modeling of a servo platform driven by pneumatic artificial muscles [J]. Journal of Zhejiang University :Engineering Science, 2004, 38(8): 1056-1060.
[9] TONDU B , LOPEZ P. Modeling and control of McKibben artificial muscle robot actuators [J]. Journal of Dynamic Systems, Measurement, and Control, 2000, 122(3): 416.
[10] ZUO He, TAO Guo-liang, ZHU Xiao-cong. Modeling and enhancement of McKibben pneumatic muscle actuators [J]. Advanced Materials Research, 2012, 591-593: 793-796.
[11] ANDRIGHETTO P L, VALDIERO A C, CARLOTTO L. Study of the friction behavior in industrial pneumatic actuators [J]. ABCM Symposium Series in Mechatronics, 2006, 2(2): 369-376.
[12] RICHER E , HURMUZLU Y. A high performance pneumatic force actuator system Part I-Nonlinear mathematical model [J]. Issue of ASME Journal of Dynamic Systems Measurement and Control, 2000, 122(3): 416-425.
[13] JAMES E B, BRIAN W M. Modeling, identification, and control of a pneumatically actuated, force controllable robot [J]. IEEE Transactions on Robotics and Automation, 1998, 14(5): 732-742.
[14] OLABY O, BRUN X, SESMAT S, et al. Characterization and modeling of a proportional valve for control synthesis [C]∥ Proceedings of the 6th JFPS International Symposium on Fluid Power. Tsukuba, Japan: Japan Fluid Power System Society, 2005: 77276.
[15] 孔祥臻, 刘延俊, 王勇等. 气动比例阀的死区补偿与仿真. 山东大学学报:工学版 [J]. 2006, 36(1): 99-102.
KONG Xiang-zhen, LIU Yan-jun, WANG Yong, et al. Compensation and simulation for the deadband of the pneumatic proportional valve. Journal of Shandong University :Engineering Science [J] .2006, 36(1): 99-102.
[16] YAO Bin, TOMIZUKA M. Adaptive robust control of MIMO nonlinear systems in semi-strict feedback forms [J]. Automatica, 2001, 37: 1305-1321.

[1] WANG Qing, YU Xiao guang, Qiao Ming jie, ZHAO An an, CHENG Liang, LI Jiang xiong, KE Ying lin. Rapid calibration based on SQP algorithm for coordinate frame of localizers[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(2): 319-327.
[2] ZHOU Feng, GU Lin yi, LUO Gao sheng, CHEN Zong heng. Adaptive backstepping sliding mode control for electro hydraulic proportional propulsion system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1111-1118.
[3] JIA Chi qian, FENG Dong qin. Security assessment for industrial control systems based on fuzzy analytic hierarchy process[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 759-765.
[4] JIN Xin, LIANG Jun. Multivariable offset free model predictive control in dynamic PLS framework[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 750-758.
[5] FEI Shao hua, LIU Dan, QIAO Ming jie, ZHANG Ming,FANG Qiang. Synchronous control system design of dual drive end frame executed platform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(1): 85-92.
[6] SONG Zhi qiang, ZHOU Xian zhong, LI Hua xiong. Coordinated stalking tracking for multiple unmanned ground vehicles[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(12): 2349-2354.
[7] QIU Xiang, SONG Hai yu, YU Li. Bullwhip effect control based on average dwell time method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 1909-1915.
[8] WANG Ri jun, BAI Yue, XU Zhi jun, GONG Xun, ZHANG Xin, TIAN Yan tao. Fuzzy self adjusting tracking control based on disturbance observer for airborne platform mounted on multi rotor unmanned aerial vehicle[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 2005-2012.
[9] QIN Zhan-bin, CHEN Fei-fei, JIN Bo, ZHANG Lu-lu. PID auto tuning method for spool position control of electro hydraulic proportional valve[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1503-1508.
[10] SUN Wen-da, LI Ping, FANG Zhou. Time-delay uncertain robust optimal control on unmanned helicopter based on dynamic inversion[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(7): 1326-1334.
[11] DOU Ya-dong, WANG Qing, LI Jiang-xiong, KE Ying-lin. Data integration for aircraft digital assembly system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 858-865.
[12] LUO Zhong-hai, MENG Xiang-lei, BA Xiao-fu, FEI Shao-hua, FANG Qiang. Design on hybrid force position control of large aircraft components posture alignment platform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(2): 265-274.
[13] LUO Gao-sheng, GU Lin-yi, LI Lin. Robust adaptive control of elbow based on robust observer[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(10): 1758-1766.
[14] FANG Qiang, ZHOU Qing-hui, FEI Shao-hua, MENG Xiang-lei, BA Xiao-fu, ZHANG Yan-ni, KE Ying-lin. Pneumatic servo control system design for pressure foot of an end-effector[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(8): 1442-1450.
[15] QU Wei-wei, SHI Xin, DONG Hui-yue, FENG Pu-jia,ZHU Ling-sheng, KE Ying-lin. Simulation and test on process of percussive Impact riveting[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(8): 1411-1418.