Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Automatic Technology, Telecommunication Technology     
Multivariable offset free model predictive control in dynamic PLS framework
JIN Xin, LIANG Jun
College of Control Science and Engineering, Zhejiang University, Hangzhou 310027,China
Download:   PDF(822KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An offset free model predictive control (MPC) in the DyPLS framework was proposed in order to deal with the problem of system offset which was caused by mismatch between actual plant and dynamic partial least square (DyPLS) model. State space MPC was extended into the DyPLS framework. The state space model was used in inner model to describe the system dynamic, and state space MPC controller was designed. The state of inner model was as the feedback of the control system. This state can’t describe the real system state and results in offset due to model/plant mismatch. A disturbance model was introduced in the inner state space model in order to solve the problem. A state observer was used to estimate the error between the inner model and system output. Observability condition of augmented model was given. The covariance that the original space data were projected to the latent variable space was analyzed in order to calculate the gain matrix of the observer with Kalman filter. The method used the system output as feedback in the control scheme. The offset free tracking was guaranteed and unmeasured step disturbance can be rejected. The simulation results based on Jerome Ray distillation column model demonstrated the effectiveness of proposed method.



Published: 01 April 2016
CLC:  TP 273  
Cite this article:

JIN Xin, LIANG Jun. Multivariable offset free model predictive control in dynamic PLS framework. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 750-758.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.04.021     OR     http://www.zjujournals.com/eng/Y2016/V50/I4/750


基于动态PLS框架的多变量无静差预测控制

针对动态偏最小二乘(DyPLS)建模方法容易导致模型与实际系统的失配,使控制系统产生静差的问题,提出基于DyPLS框架的多变量系统无静差模型预测控制(MPC)方法.将基于状态空间模型的MPC方法推广到DyPLS框架下.在内模型中采用状态空间模型描述系统的动态过程,利用该模型设计MPC控制器.该方法将内模型的状态作为控制系统的反馈,由于模型的失配导致该状态不能准确地描述系统的实际状态,导致了静差的存在.对该框架下的状态空间模型进行增广,引入扰动模型,利用状态观测器估计系统输出与模型输出的偏差.给出该增广模型的能观测性条件.为了采用卡尔曼滤波器的方法求取观测器的增益矩阵,分析原空间的数据投影到潜变量空间后变量方差的变化情况.该方法在控制中引入了输出反馈,保证了控制的无静差跟踪特性,能够抑制系统中的不可测扰动.Jerome Ray的精馏塔模型的仿真结果验证了该方法的有效性.

[1] MUSKE K R, RAWLINGS J B. model predictive control with linear models [J]. Aiche Journal, 1993,39(2): 262-287.
[2] LJUNG L. System identification theory for the user. prentice hall information and system sciences series [M]. 2nd ed. Upper Saddle River: Prentice Hall,1999:79-99.
[3] HUUSOM J K, POULSEN N K, JORGENSEN S B, et al. Adaptive disturbance estimation for offset free SISO model predictive control [C]∥ Proceedings of the American Control Conference. New York:\[s.n.], 2011:2417-2422.
[4] MUSKE K R, BADGWELL T A. Disturbance modeling for offset free linear model predictive control [J]. Journal Of Process Control, 2002, 12(5): 617-632.
[5] MORARI M, MAEDER U. Nonlinear offset free model predictive control [J]. Automatica, 2012, 48(9):2059-2067.
[6] BORRELLI F, MORARI M. Offset free model predictive control [C]∥ Proceedings of Ieee Conference onDecision And Control. New Orleans: [s.n.], 2007: 46634668.
[7] MAEDER U, BORRELLI F, MORARI M. Linear offset free model predictive control [J]. Automatica, 2009, 45(10): 2214-2222.
[8] MAEDER U, MORARI M. Offset free reference tracking with model predictive control [J]. Automatica, 2010, 46(9): 1469-1476.
[9] BETTI G, FARINA M, SCATTOLINI R, et al. An MPC algorithm for offset free tracking of constant reference signals [C]∥ 2012 IEEE 51st Annual Conference on Decision And Control. Maui: IEEE, 2012:5182-5187.
[10] BETTI G, FARINA M,SCATTOLINI R. A robust MPC algorithm for offset free tracking of constant reference signals [J]. IEEE Transactions on Automatic Control, 2013, 58(9): 2394-2400.
[11] KASPAR M H, RAY W H. Chemometric methods for process monitoring and high performance controller design [J]. AIChE Journal, 1992, 38(10): 1593-1608.
[12] KASPAR M H,RAY W H. Dynamic PLS modelling for process control [J]. Chemical Engineering Science, 1993, 48(20): 3447-3461.
[13] CHEN J, CHENG Y C, YEA Y. Multiloop PID controller design using partial least squares decoupling structure [J]. Korean Journal of Chemical Engineering, 2005, 22(2): 173-183.
[14] LAUR D, MART NEZ M, SALCEDO J V, et al. PLS based model predictive control relevant identification: PLS PH algorithm [J]. Chemometrics and Intelligent Laboratory Systems, 2010, 100(2): 118-126.
[15] HU B, ZHENG P, LIANG J. Multi loop internal model controller design based on a dynamic PLS framework [J]. Chinese Journal of Chemical Engineering, 2010, 18(2): 277-285.
[16] HU B, ZHAO Z, LIANG J. Multi loop nonlinear internal model controller design under nonlinear dynamic PLS framework using ARX neural network model [J]. Journal of Process Control, 2012, 22(1): 207-217.
[17] LV Y, LIANG J. Multi loop constrained iterative model predictive control using ARX PLS decoupling structure [J]. Chinese Journal of Chemical Engineering, 2013, 21(10): 1129-1143.
[18] WOLD S, SJOSTROM M, ERIKSSON L. PLS regression: a basic tool of chemometrics [J]. Chemometrics And Intelligent Laboratory Systems, 2001, 58(2): 109-130.
[19] LAKSHMINARAVANAN S, SHAH S L, NANDAKUMAR K. Modeling and control of multivariable processes: dynamic PLS approach [J]. AIChE Journal, 1997, 43(9): 2307-2322.
[20] MORI J, YU J. A quality relevant non gaussian latent subspace projection method for chemical process monitoring and fault detection [J]. Aiche Journal, 2014,60(2): 485-499.
[21] MACIEJOWSKI J. M. Predictive control: with constraints [M]. Upper Saddle River: Prentice Hall,2002.
[22] HUUSOM J K, POULSEN N K, JORGENSEN S B, et al. Tuning SISO offset free model predictive control based on ARX models [J]. Journal of Process Control, 2012, 22(10): 1997-2007.
[23] JEROME N F, RAY W H. High performance multivariable control strategies for systems having timedelays [J]. Aiche Journal, 1986, 32(6): 914931.
[24] ZHAO Z, HU B, LIANG J. Multi loop adaptive internal model control based on a dynamic partial least squares model [J]. Journal Of Zhejiang University: Science A, 2011, 12(3): 190-200

[1] WANG Qing, YU Xiao guang, Qiao Ming jie, ZHAO An an, CHENG Liang, LI Jiang xiong, KE Ying lin. Rapid calibration based on SQP algorithm for coordinate frame of localizers[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(2): 319-327.
[2] ZHOU Feng, GU Lin yi, LUO Gao sheng, CHEN Zong heng. Adaptive backstepping sliding mode control for electro hydraulic proportional propulsion system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1111-1118.
[3] JIA Chi qian, FENG Dong qin. Security assessment for industrial control systems based on fuzzy analytic hierarchy process[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 759-765.
[4] FEI Shao hua, LIU Dan, QIAO Ming jie, ZHANG Ming,FANG Qiang. Synchronous control system design of dual drive end frame executed platform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(1): 85-92.
[5] SONG Zhi qiang, ZHOU Xian zhong, LI Hua xiong. Coordinated stalking tracking for multiple unmanned ground vehicles[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(12): 2349-2354.
[6] WANG Ri jun, BAI Yue, XU Zhi jun, GONG Xun, ZHANG Xin, TIAN Yan tao. Fuzzy self adjusting tracking control based on disturbance observer for airborne platform mounted on multi rotor unmanned aerial vehicle[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 2005-2012.
[7] QIU Xiang, SONG Hai yu, YU Li. Bullwhip effect control based on average dwell time method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 1909-1915.
[8] QIN Zhan-bin, CHEN Fei-fei, JIN Bo, ZHANG Lu-lu. PID auto tuning method for spool position control of electro hydraulic proportional valve[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1503-1508.
[9] SUN Wen-da, LI Ping, FANG Zhou. Time-delay uncertain robust optimal control on unmanned helicopter based on dynamic inversion[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(7): 1326-1334.
[10] TAO Guo-liang, ZUO He, LIU Hao. Structure design and motion control of parallel platform driven by pneumatic muscles and air cylinder[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 821-828.
[11] DOU Ya-dong, WANG Qing, LI Jiang-xiong, KE Ying-lin. Data integration for aircraft digital assembly system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 858-865.
[12] LUO Zhong-hai, MENG Xiang-lei, BA Xiao-fu, FEI Shao-hua, FANG Qiang. Design on hybrid force position control of large aircraft components posture alignment platform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(2): 265-274.
[13] LUO Gao-sheng, GU Lin-yi, LI Lin. Robust adaptive control of elbow based on robust observer[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(10): 1758-1766.
[14] FANG Qiang, ZHOU Qing-hui, FEI Shao-hua, MENG Xiang-lei, BA Xiao-fu, ZHANG Yan-ni, KE Ying-lin. Pneumatic servo control system design for pressure foot of an end-effector[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(8): 1442-1450.
[15] QU Wei-wei, SHI Xin, DONG Hui-yue, FENG Pu-jia,ZHU Ling-sheng, KE Ying-lin. Simulation and test on process of percussive Impact riveting[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(8): 1411-1418.