Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Simulation and test on process of percussive Impact riveting
QU Wei-wei1, SHI Xin1, DONG Hui-yue1, FENG Pu-jia2,ZHU Ling-sheng1, KE Ying-lin1
1.Department of Mechanical Engineering, Zhejinag University, Hangzhou 310027, China; 2.Hanzhong Aircraft Company, Avic Aircraft Co.ltd, Hanzhong 723213, China
Download:   PDF(2038KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Kinematic modeling and simulation of percussive impact riveting are presented to improve the quality of riveting process. Kinematic model of rivet gun is setup to determine the output speed and frequency of hammer under different input pneumatic pressure, ranging from 0.2 MPa to 0.6 MPa; Process of percussive impact riveting is simulated in ABAQUS, and by setting different speed of hammer (acquired in the kinematic model), the corresponding riveting time is acquired when the driven rivet head dimension is acceptable. Finally, riveting tests are carried out for model validation donghuiyue, Deviation between the simulation and experimental results is under 15%, which shows the effectiveness of the proposed method. All above end up with an conclusion that input pressure and riveting time has a great influence on riveting process.



Published: 01 August 2014
CLC:  TP 273  
Cite this article:

QU Wei-wei, SHI Xin, DONG Hui-yue, FENG Pu-jia,ZHU Ling-sheng, KE Ying-lin. Simulation and test on process of percussive Impact riveting. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(8): 1411-1418.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.08.010     OR     http://www.zjujournals.com/eng/Y2014/V48/I8/1411


气动锤铆过程仿真分析与试验

为提高锤铆工艺质量,提出一种对锤铆过程仿真分析的方法,并获得锤铆工艺所需铆接时间.建立气动铆枪的运动学模型,结合Matlab仿真得到不同输入气压下(0.2~0.6 MPa)冲锤的冲击速度及其冲击频率;在ABAQUS中对锤铆过程进行有限元分析,将运动学模型的仿真结果(冲锤的冲击速度及频率)应用至有限元模型中,以获得规定的镦头尺寸为目标,得到不同输入气压下需要的铆接时间.实验得到铆钉在0.2~0.6 MPa不同气压下的铆接时间,实验值与仿真值的偏差在15%之内,验证此仿真方法的可行性.结果表明,铆枪的输入气压及铆接时间是影响锤铆工艺的关键因素.

[1] 杜宝瑞,冯子明,姚艳彬,等.用于飞机部件自动制孔的机器人制孔系统[J]. 航空制造技术,2010,32(02): 47-50.
DU Bao-rui, FENG Zhi-ming, YAO Yan-bin, et al. Robot drilling system for automatic drilling of aircraft component [J]. Aeronautical Manufacturing Technology, 2010,32(02): 47-50.
[2] JAYAWEERA N, WEBB P. Adaptive robotic assembly of compliant aero-structure components [J]. Robotics and Computer-Integrated Manufacturing, 2007, 23(02): 180-194.
[3] XI Feng-feng, YU Lin, TU Xiao-wei. Framework on robotic percussive riveting for aircraft assembly automation [J]. Advances in Manufacturing, 2013, 13(1): 112-122.
[4] 袁红璇. 飞机结构件连接孔制造技术[J]. 航空制造技术, 2007,24(01): 96-99.
YUAN Hong-xuan. Manufacturing technology of connecting hole in aircraft structures [J]. Aeronautical Manufacturing Technology, 2007,24(01): 96-99.
[5] DE RIJCK J, HOMAN J, SCHIJVE J, et al. The driven rivet head dimension as an application of the fatigue performance of aircraft lap joints [J]. International Journal of Fatigue, 2007,01(29): 2208-2218.
[6] ZHANG Kai-fu, CHENG Hui, LI Yuan. Riveting Process modeling and simulating for deformation analysis of aircraft’s thin-walled sheet-metal parts [J]. Chinese Journal of Aeronautics, 2011,24(03):369-377.
[7] MANES A, GIGLIO M, VIGANO F. Effect of riveting process parameters on the local stress field of a tt-joint[J]. International Journal of Mechanical Science, 2011,01(53): 1039-1049.
[8] 郭庆,蒋万青.基于CAD-CAE计算铆钉连接件疲劳寿命[J].机械设计.2007, 24(4): 261-265.
GUO Qing, JIANG Wang-qing. Calculation on fatigue life of riveted joint parts based on CAD/CAE [J]. Journal of Machine Design, 2007, 24(4): 261-265.
[9] CHERNG J, EKSIOGLU M, KIZILASLAN K. Vibration reduction of pneumatic percussive rivet tools: Mechanical and ergonomic re-design approaches [J]. Applied Ergonomics. 2009,01(40): 256-266.
[10] KADAM R. Vibration characterization and numerical modeling of a pneumatic impact hammer [D]. virginia: virginia polytechnic institute and state university, 2006.
[11] BLOXSOM W. Modeling of the reciprocating, pneumatic impact hammer [D]. Las Vegas: University of Nevada, 2003.
[12] LI Yu-wen, XI Feng-feng, BEHDINAN K. Dynamic modeling and simulation of percussive impact riveting for robotic automation [J]. Journal of Computational and Nonlinear Dynamics, 2010, Vol. 5(11): 110.
[13] B.Π.格里高利耶夫著,吴金泉译.飞机和直升机部件铆接装配[M].北京:国防工业出版社, 1988: 56107.
[14] 戴圣龙,张坤,杨守杰等.先进航空铝合金材料与应用[M].北京:国防工业出版社, 2012: 41-148.
[15] 毕运波,李永超,顾金伟等.机器人自动化制孔系统研究[J].浙江大学学报:工学版, 2013, 47(11): 1911-1916.
BI Yun-bo, LI Yong-chao, GU Jin-wei, et al. Research on Robotic Automatic Drilling System [J]. Journal of Zhejiang University: Engineering Science, 2013, 47(11): 1911-1916.
[16] 王云渤等.飞机装配工艺学[M].北京:国防工业出版社, 1984: 30133.
[17] BLANCHOT V, DAIDE A. Riveted assembly modeling: Study and numerical characterization of a riveting process [J]. Journal of Material Processing Technology, 2006,01(180): 201-209.
[18] 庄茁,由小川,廖剑晖,等.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社, 2009: 10200.

[1] WANG Qing, YU Xiao guang, Qiao Ming jie, ZHAO An an, CHENG Liang, LI Jiang xiong, KE Ying lin. Rapid calibration based on SQP algorithm for coordinate frame of localizers[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(2): 319-327.
[2] ZHOU Feng, GU Lin yi, LUO Gao sheng, CHEN Zong heng. Adaptive backstepping sliding mode control for electro hydraulic proportional propulsion system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1111-1118.
[3] JIA Chi qian, FENG Dong qin. Security assessment for industrial control systems based on fuzzy analytic hierarchy process[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 759-765.
[4] JIN Xin, LIANG Jun. Multivariable offset free model predictive control in dynamic PLS framework[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 750-758.
[5] FEI Shao hua, LIU Dan, QIAO Ming jie, ZHANG Ming,FANG Qiang. Synchronous control system design of dual drive end frame executed platform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(1): 85-92.
[6] SONG Zhi qiang, ZHOU Xian zhong, LI Hua xiong. Coordinated stalking tracking for multiple unmanned ground vehicles[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(12): 2349-2354.
[7] QIU Xiang, SONG Hai yu, YU Li. Bullwhip effect control based on average dwell time method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 1909-1915.
[8] WANG Ri jun, BAI Yue, XU Zhi jun, GONG Xun, ZHANG Xin, TIAN Yan tao. Fuzzy self adjusting tracking control based on disturbance observer for airborne platform mounted on multi rotor unmanned aerial vehicle[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 2005-2012.
[9] QIN Zhan-bin, CHEN Fei-fei, JIN Bo, ZHANG Lu-lu. PID auto tuning method for spool position control of electro hydraulic proportional valve[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1503-1508.
[10] SUN Wen-da, LI Ping, FANG Zhou. Time-delay uncertain robust optimal control on unmanned helicopter based on dynamic inversion[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(7): 1326-1334.
[11] DOU Ya-dong, WANG Qing, LI Jiang-xiong, KE Ying-lin. Data integration for aircraft digital assembly system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 858-865.
[12] TAO Guo-liang, ZUO He, LIU Hao. Structure design and motion control of parallel platform driven by pneumatic muscles and air cylinder[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 821-828.
[13] LUO Zhong-hai, MENG Xiang-lei, BA Xiao-fu, FEI Shao-hua, FANG Qiang. Design on hybrid force position control of large aircraft components posture alignment platform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(2): 265-274.
[14] LUO Gao-sheng, GU Lin-yi, LI Lin. Robust adaptive control of elbow based on robust observer[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(10): 1758-1766.
[15] FANG Qiang, ZHOU Qing-hui, FEI Shao-hua, MENG Xiang-lei, BA Xiao-fu, ZHANG Yan-ni, KE Ying-lin. Pneumatic servo control system design for pressure foot of an end-effector[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(8): 1442-1450.