Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Automatic Technology, Communication Engineering     
Coordinated stalking tracking for multiple unmanned ground vehicles
SONG Zhi qiang1,2, ZHOU Xian zhong1, LI Hua xiong1
1. Department of Control and System Engineering, Nanjing University, Nanjing 210008, China; 2. Institute of Electrical and Information Technology, Suzhou Institute of Trade and Commerce, Suzhou 215009, China
Download:   PDF(753KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A mode of coordinated stalking tracking of multiple unmanned ground vehicles (MUGVs) was proposed in order to make the MUGVs uninterruptedly track the target in the rear or from the side. In the process of tracking, each UGV keeps a certain distance with the target and maintains the phase between the UGVs at the same time. According to the characteristics of the coordinated stalking tracking, a coordinated tracking algorithm was proposed based on the kinematics model of the unmanned ground vehicle. Firstly, the stalking tracking was defined, and the target kinematic model was redefined based on the kinematics model of the UGV. Then, the control law was designed based on the Lyapunov stability theory. The asymptotic stability of the algorithm was proved and the obstacle avoidance function through fuzzy reasoning was integrated in order to make the algorithm more practical. The designed algorithm can achieve the coordinated stalking tracking of multiple unmanned ground vehicles for the target, keeping a certain distance and phase between the ground unmanned vehicles and the target. In the presence of obstacles, unmanned ground vehicles can avoid obstacles safely, and then continue to cooperative following target. The developed algorithm is shown to be stable and convergent through theoretical proof, and simulation results show the correctness and the effectiveness of the algorithm.



Published: 31 December 2015
CLC:  TP 273  
Cite this article:

SONG Zhi qiang, ZHOU Xian zhong, LI Hua xiong. Coordinated stalking tracking for multiple unmanned ground vehicles. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(12): 2349-2354.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2015.12.015     OR     http://www.zjujournals.com/eng/Y2015/V49/I12/2349


多地面无人平台协同尾随跟踪

为使多地面无人平台(MUGVs)可在目标后方或侧面持续不间断地对跟踪目标,提出MUGVs协同尾随跟踪模式.在跟踪过程中,每个UGV与目标保持一定的距离,同时各UGV之间保持一定的相位.针对协同尾随跟踪的特点,提出基于地面无人平台运动学模型的协同跟踪算法.对协同尾随跟踪进行定义,针对地面无人平台运动学模型,重新定义目标运动模型.基于Lyapunov稳定性理论设计控制律,并证明算法的渐进稳定性.为使算法更具实用性,在算法中集成避障功能,通过模糊推理实现避障.所设计的算法能够实现多地面无人平台协同尾随跟踪目标,使得各个地面无人平台既和目标保持一定的距离,又能保持一定的相位.在有障碍物的情况下,地面无人平台可以安全避开障碍,之后继续尾随跟踪目标.仿真实验表明了算法的正确性和有效性.

[1] FREW E W. Cooperative standoff tracking of uncertain moving targets using active robot networks [C] ∥ 2007 IEEE International Conference on Robotics and Automation. Roma: IEEE, 2007: 3277-3282.
[2] PEI W. LAN Y B, LUO X W, et al. Integrated Sensor System for Rice Conditions Monitoring Based UGV \[J\]. International Journal of Agricultural and Biological Engineering, 2004, 7(2): 75-81.
[3] KHALEGHI A M, XU D, WANG Z R, et al. ADDDAMS based planning and control framework for surveillance and crowd control via UAVs and UGVs \[J\]. Expert Systems with Applications, 2013, 40(18):7168-7183.
[4] KIM J H, KWON J W, SEO J. Multi UAV based stereo vision system without GPS for ground obstacle mapping to assist path planning of UGV \[J\]. Electronics Letters, 2014, 50(20): 1431-1432.
[5] LIM S, KIM Y, LEE D, et al. Standoff target tracking using a vector field for multiple unmanned aircrafts [J]. Journal of Intelligent and Robotic Systems, 2013,69(1 4): 347-360.
[6] CHEN H, CHANG K, AGATE C S. UAV path planning with tangent plus Lyapunov vector field guidance and obstacle avoidance [J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 840-856.
[7] KIM S, OH H, TSOURDOS A. Nonlinear model predictive coordinated standoff tracking of a moving ground vehicle [J]. Journal of Guidance, Control, and Dynamics, 2013, 36(2): 557-566.
[8] YOON S, PARK S, KIM Y. Circular motion guidance law for coordinated standoff tracking of a moving target [J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4): 2440-2462.
[9] OH H, TURCHI D, KIM S, et al. Coordinated standoff tracking using path shaping for multiple UAVs [J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 348-363.
[10] OH H, KIM S, TSOURDOS A, et al. Decentralised standoff tracking of moving targets using adaptive sliding mode control for UAVs [J]. Journal of Intelligent and Robotic Systems, 2014, 76(1): 169-183.
[11] OH H, KIM S, SHIN H S, et al. Rendezvous and standoff target tracking guidance using differential geometry [J]. Journal of Intelligent and Robotic Systems, 2013, 69(1 4): 389-405.
[12] SONG Z Q, LI H X, CHEN C L, et al. Coordinated standoff tracking of moving targets using differential geometry [J]. Journal of Zhejiang University SCIENCE C, 2014, 15(4): 284-292.
[13] SONG Z Q, ZHOU X Z, LI W, et al. Scheduling strategies of relay tracking for network based multiple unmanned ground vehicles [C] ∥ Control Conference (CCC), 2014 33rd Chinese. Nanjing: IEEE, 2014: 7943-7947.
[14] BURLUTSKIY N, TOUAHMI Y, LEE B H. Power efficient formation configuration for centralized leader follower AUVs control [J]. Journal of Marine Science and Technology, 2012, 17(3): 315-329.
[15] DU Z J, REN L M, WANG W D, et al. Kinematics/fuzzy logic combined controller for formation control of mobile robots [J]. Journal of Harbin Institute of Technology, 2013, 20(4): 121-128.
[16] HU J, ZHENG W X. Adaptive tracking control of leader follower systems with unknown dynamics and partial measurements [J]. Automatica, 2014, 50(5): 1416-1423.
[17] LIU B, ZHANG R, SHI C. Formation control of multiple behavior based robots [C] ∥ 2006 International Conference on Computational Intelligence and Security. Guang zhou: IEEE, 2006: 544-547.
[18] ANTONELLI G,ARRICHIELLO F,CHIAVERINI S. Experiments of formation control with multirobot systems using the null space based behavioral control [J]. IEEE Transactions on Control Systems Technology, 2009, 17(5): 1173-1182.
[19] REN W, BEARD R W. Formation feedback control for multiple spacecraft via virtual structures [J].Control Theory and Applications, IEE Proceedings. 2004, 151(3): 357-368.
[20] MEHRJERDI H, GHOMMAM J, SAAD M. Nonlinear coordination control for a group of mobile robots using a virtual structure [J]. Mechatronics, 2011, 21(7): 1147-1155.
[21] REZAEE H, ABDOLLAHI F. A decentralized cooperative control scheme with obstacle avoidance for a team of mobile robots [J]. IEEE Transactions on Industrial Electronics, 2014, 61(1): 347-354.
[22] LEE D, SANYAL A K, Butcher E A. Asymptotic tracking control for spacecraft formation flying with decentralized collision avoidance [J]. Journal of Guidance, Control, and Dynamics, 2015, 38(4): 587-600.
[23] LEE Y H, KIM S G, KUC T Y, et al. Virtual target tracking of mobile robot and its application to formation control [J]. International Journal of Control, Automation and Systems, 2014, 12(2): 390-398.
[24] 刘钦,刘峥,刘韵佛,等.多传感器优化部署下的机动目标协同跟踪算法[J].系统工程与电子技术, 2013, 35(2): 304-309.
LIU Qin, LIU Zheng, LIU Yun fo, et al. Maneuvering target collaborative tracking algorithm with multi sensor deployment optimization [J]. Systems Engineering and Electronics, 2013,35(2): 304-309.
[25] NIA D N, TANG H S, KARASFI B, et al. Virtual force field algorithm for a behaviour based autonomous robot in unknown environments [J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2011, 225(1): 51-62.
[26] HONG T S, NAKHAEINIA D, KARASFI B. Application of fuzzy logic in mobile robot navigation [M]. \[S.l.\]: INTECH Open Access Publisher, 2012: 21-36.

[1] WANG Qing, YU Xiao guang, Qiao Ming jie, ZHAO An an, CHENG Liang, LI Jiang xiong, KE Ying lin. Rapid calibration based on SQP algorithm for coordinate frame of localizers[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(2): 319-327.
[2] ZHOU Feng, GU Lin yi, LUO Gao sheng, CHEN Zong heng. Adaptive backstepping sliding mode control for electro hydraulic proportional propulsion system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1111-1118.
[3] JIA Chi qian, FENG Dong qin. Security assessment for industrial control systems based on fuzzy analytic hierarchy process[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 759-765.
[4] JIN Xin, LIANG Jun. Multivariable offset free model predictive control in dynamic PLS framework[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 750-758.
[5] FEI Shao hua, LIU Dan, QIAO Ming jie, ZHANG Ming,FANG Qiang. Synchronous control system design of dual drive end frame executed platform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(1): 85-92.
[6] QIU Xiang, SONG Hai yu, YU Li. Bullwhip effect control based on average dwell time method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 1909-1915.
[7] WANG Ri jun, BAI Yue, XU Zhi jun, GONG Xun, ZHANG Xin, TIAN Yan tao. Fuzzy self adjusting tracking control based on disturbance observer for airborne platform mounted on multi rotor unmanned aerial vehicle[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 2005-2012.
[8] QIN Zhan-bin, CHEN Fei-fei, JIN Bo, ZHANG Lu-lu. PID auto tuning method for spool position control of electro hydraulic proportional valve[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1503-1508.
[9] SUN Wen-da, LI Ping, FANG Zhou. Time-delay uncertain robust optimal control on unmanned helicopter based on dynamic inversion[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(7): 1326-1334.
[10] DOU Ya-dong, WANG Qing, LI Jiang-xiong, KE Ying-lin. Data integration for aircraft digital assembly system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 858-865.
[11] TAO Guo-liang, ZUO He, LIU Hao. Structure design and motion control of parallel platform driven by pneumatic muscles and air cylinder[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 821-828.
[12] LUO Zhong-hai, MENG Xiang-lei, BA Xiao-fu, FEI Shao-hua, FANG Qiang. Design on hybrid force position control of large aircraft components posture alignment platform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(2): 265-274.
[13] LUO Gao-sheng, GU Lin-yi, LI Lin. Robust adaptive control of elbow based on robust observer[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(10): 1758-1766.
[14] QU Wei-wei, SHI Xin, DONG Hui-yue, FENG Pu-jia,ZHU Ling-sheng, KE Ying-lin. Simulation and test on process of percussive Impact riveting[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(8): 1411-1418.
[15] FANG Qiang, ZHOU Qing-hui, FEI Shao-hua, MENG Xiang-lei, BA Xiao-fu, ZHANG Yan-ni, KE Ying-lin. Pneumatic servo control system design for pressure foot of an end-effector[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(8): 1442-1450.