Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Design on hybrid force position control of large aircraft components posture alignment platform
LUO Zhong-hai1, MENG Xiang-lei2, BA Xiao-fu2, FEI Shao-hua1, FANG Qiang1
1. State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China; 2. Aviation Industry Corporation of China Xi’an Aircraft Industry(Group) Limited Company, Xi’an 710089, China
Download:   PDF(1061KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to solve the problem that perpendicularity and parallelism error of three-axis localizers cause posture alignment error and internal force of aircraft components, the paper introduces a hybrid force position control system for posture alignment platform of large aircraft components. Error model of posture alignment was established to explain the problem. Then the strategy to select axes under position control and axes under force control was proposed based on condition number of mechanism’s Jacobian matrix. Static error calculation indicates that hybrid control strategy may improve posture accuracy and reduce internal force significantly under the given posture alignment condition when 0.05 mm/m perpendicularity error exists on each localizer and the maximum parallelism error was 0.1 mm/m and the averaged parallelism error was 0.07 mm/m between localizers. The experiment indicates that the torque controller follows the desire torque signal properly with disturbing position signal and the dynamic torque error is below 0.03 N·m, which is applicable on real posture alignment platform.



Published: 01 February 2015
CLC:  TP 273  
Cite this article:

LUO Zhong-hai, MENG Xiang-lei, BA Xiao-fu, FEI Shao-hua, FANG Qiang. Design on hybrid force position control of large aircraft components posture alignment platform. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(2): 265-274.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2015.02.011     OR     http://www.zjujournals.com/eng/Y2015/V49/I2/265


飞机大部件调姿平台力位混合控制系统设计

为了解决调姿平台中,由于三坐标定位器自身各轴垂直度和相互各轴平行度误差引起的调姿误差以及对飞机大部件造成内力的问题,提出一种飞机大部件调姿平台的力/位置混合控制方法.通过建立调姿误差模型,分析三坐标定位器自身垂直度和相互平行度误差对姿态控制以及部件内力的影响;根据机构雅可比矩阵条件数,提出调姿平台力控制轴和位置控制轴分配策略;通过静态误差计算得到,在三坐标定位器垂直度误差为0.05 mm/m,同向轴两两之间最大平行度误差为0.1 mm/m且平均平行度误差为0.07 mm/m时,在给定的部件尺寸和调姿轨迹下,力/位置混合控制方法的调姿精度优于全位置控制方法,并且显著降低了调姿部件内力.实验结果表明,力控制器在位置扰动下能够稳定跟随力矩指令,动态误差在±0.03 N·m内,满足定位器调姿控制要求.

[1] WILLIAMS G, CHALUPA E, RAHHAL S. Automated positioning and alignment systems [C] ∥
SAE Aerospace Automated Fastening. New Orleans: SAE International, 2000013014.
[2] HUANG L, XU W L, TORRANCE J. Design of a position and force control scheme for 6RSS parallel robots and its application in chewing robots [J]. International Journal of Humanoid Robotics, 2010, 7(3): 477-489.
[3] HAN S. Kinematically redundant parallel haptic device with large workspace [J]. International Journal of Advanced Robotic Systems, 2012, 260(9): 19.
[4] NOBUYUKI I, TAKANORI K, KOICHI M. Simultaneous control of the motion and stiffness of redundant closed-loop link mechanisms with elastic elements [J]. Journal of Mechanical Science and Technology, 2010,(24): 285-288.
[5] TANG Hai-tao, YAO Jian-tao, LI Cheng. Hybrid force/position control hardware system design and force servo control realization [J]. Advanced Materials Research, 2011, 317(8): 685-689.
[6] JAYDEEP R, LOUIS W. Adaptive force control of position/velocity controlled robots: theory and experiment [C] ∥ 2001 IEEE/RSJ International Conference on Intelligent Robots and System. Maui: Institute of Electrical and Electronics Engineers Inc, 2001, 4: 2051-2059.
[7] JAN K. Contact force control in the robot end-point [C] ∥ 10th International Fatigue Congress, FATIGUE 2010. Prague: Elsevier Ltd, 2010, 2(1): 563-572.
[8] LIN J, LIN C C, LO H S. Hybrid position/force control of robot manipulators mounted on oscillatory bases using adaptive fuzzy control [C] ∥ 2010 IEEE International Symposium on Intelligent Control. Yokohama: Institute of Electrical and Electronics Engineers Inc, 2010: 487-492.
[9] KANTY R, CEDRIC C, PHILIPPE L. Hybrid force/position control applied to automated guiding tasks at the microscale [C] ∥ 23rd IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems. Taipei: IEEE Computer Society, 2010: 4366-4371.
[10] WANG S, EHMANN K F. Error model and accuracy analysis of a six-DOF Stewart platform [J]. Journal of manufacturing Science and Engineering, 2002, 124(2): 286-295.
[11] TSAI L W, SAMEER A J. Jacobian analysis of limited DOF parallel manipulator[J]. Journal of Mechanical Design, 2002, 124(2): 254-258.
[12] HUANG Ya-lou, LU Gui-zhang. The reasonable definition of internal loading of objects and load distribution for multiple robot arms [C] ∥ 2nd Asian Conference on Robots and Applications. Peking: [s. n.], 1994: 255-260.
[1] WANG Qing, YU Xiao guang, Qiao Ming jie, ZHAO An an, CHENG Liang, LI Jiang xiong, KE Ying lin. Rapid calibration based on SQP algorithm for coordinate frame of localizers[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(2): 319-327.
[2] ZHOU Feng, GU Lin yi, LUO Gao sheng, CHEN Zong heng. Adaptive backstepping sliding mode control for electro hydraulic proportional propulsion system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1111-1118.
[3] JIN Xin, LIANG Jun. Multivariable offset free model predictive control in dynamic PLS framework[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 750-758.
[4] JIA Chi qian, FENG Dong qin. Security assessment for industrial control systems based on fuzzy analytic hierarchy process[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 759-765.
[5] FEI Shao hua, LIU Dan, QIAO Ming jie, ZHANG Ming,FANG Qiang. Synchronous control system design of dual drive end frame executed platform[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(1): 85-92.
[6] SONG Zhi qiang, ZHOU Xian zhong, LI Hua xiong. Coordinated stalking tracking for multiple unmanned ground vehicles[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(12): 2349-2354.
[7] QIU Xiang, SONG Hai yu, YU Li. Bullwhip effect control based on average dwell time method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 1909-1915.
[8] WANG Ri jun, BAI Yue, XU Zhi jun, GONG Xun, ZHANG Xin, TIAN Yan tao. Fuzzy self adjusting tracking control based on disturbance observer for airborne platform mounted on multi rotor unmanned aerial vehicle[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 2005-2012.
[9] QIN Zhan-bin, CHEN Fei-fei, JIN Bo, ZHANG Lu-lu. PID auto tuning method for spool position control of electro hydraulic proportional valve[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1503-1508.
[10] SUN Wen-da, LI Ping, FANG Zhou. Time-delay uncertain robust optimal control on unmanned helicopter based on dynamic inversion[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(7): 1326-1334.
[11] TAO Guo-liang, ZUO He, LIU Hao. Structure design and motion control of parallel platform driven by pneumatic muscles and air cylinder[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 821-828.
[12] DOU Ya-dong, WANG Qing, LI Jiang-xiong, KE Ying-lin. Data integration for aircraft digital assembly system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 858-865.
[13] LUO Gao-sheng, GU Lin-yi, LI Lin. Robust adaptive control of elbow based on robust observer[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(10): 1758-1766.
[14] FANG Qiang, ZHOU Qing-hui, FEI Shao-hua, MENG Xiang-lei, BA Xiao-fu, ZHANG Yan-ni, KE Ying-lin. Pneumatic servo control system design for pressure foot of an end-effector[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(8): 1442-1450.
[15] QU Wei-wei, SHI Xin, DONG Hui-yue, FENG Pu-jia,ZHU Ling-sheng, KE Ying-lin. Simulation and test on process of percussive Impact riveting[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(8): 1411-1418.