Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Mechanism analysis, simulation and experiment study of dynamic servo control system of periodic high pressure impact
ZHANG Bin, DENG Qian-kun, WANG Shuang, YANG Hua-yong
The State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027
Download:   PDF(1298KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The cylinder and servo-valve applied to airplane hydraulic systems should be subject to periodic trapezoid-shaped pressure impact test treated as a closed chamber. A hydraulic servo control system dynamically tracking the standard impact pressure curve was developed for the test. Mathematic models of the two stage servo-valve and the being tested chamber was established, and the simulation in AMESim was accomplished using the digital PID algorithm. The flow rate and valve open area under different chamber volume and different impact frequency was studied. Maximum flow rate of the servo valve in simulation is about 250 L/min under the condition of 5-42 MPa impact pressure, 6 L chamber volume and 2 Hz impact frequency. Experiment system could be visually real-time controlled based on the LabVIEW and data acquisition card using graphic coding technology. Actual pressure curve generated by the hydraulic servo control system precisely falls into the standard area. Experiment results tally with the simulation and the system reaches the design target.



Published: 01 February 2015
CLC:  TH 137  
Cite this article:

ZHANG Bin, DENG Qian-kun, WANG Shuang, YANG Hua-yong. Mechanism analysis, simulation and experiment study of dynamic servo control system of periodic high pressure impact. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(2): 275-281.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2015.02.012     OR     http://www.zjujournals.com/eng/Y2015/V49/I2/275


压力脉冲试验伺服控制系统机理分析与仿真试验

为实现压力脉冲试验中标准压力波形的精确动态跟踪控制,满足高压力高频率持续冲击的要求,建立该试验的液压伺服系统与测控平台.将飞机用作动筒和伺服阀等被试液压件处理为封闭容腔,利用油液压缩性进行建压,采用LabVIEW图形化编程技术完成了液压系统的可视化动态伺服控制.在建立伺服阀、被试容腔和蓄能器数学模型的基础上,结合数字PID控制算法,完成AMESim环境下的仿真,对比分析不同容腔容积和冲击频率对系统性能的影响,得到不同条件下系统流量和阀口开度等参数的理论值,仿真结果表明伺服阀需要有额定200 L/min以上的通流能力.实际试验系统以压力等级50 MPa,通流能力230 L/min的大流量伺服阀为直接控制对象,试验高压达到50 MPa,并可无级调整,压力冲击波形周期2 Hz、区间5~42 MPa,试验曲线落在标准阴影区以内,试验结果符合预期指标,并验证了仿真分析的可靠性.

[1] GJB 3849-99.飞机液压作动筒、阀、压力容器脉冲试验要求和方法[S]. 北京:国防科学技术工业委员会,1999.
GJB 3849-99.Aircraft hydraulic actuators, valves and pressure vessels impulse test requirements and methods[S]. Beijing: Commission of Science Technology and Industry for National Defense, 1999.
[2] 李军.飞机液压系统压力脉冲试验的机理分析与控制[D].西安:西北工业大学,2007: 36,40-41.
LI Jun. Analyze and control on pressure pulse test of aeroplane hydraulic system [D]. Xi’an: Northwestern Polytechnical University, 2007: 36, 40-41.
[3] 袁朝辉,马煜.基于PID神经网络的液压脉冲试验系统[J].液压与气动,2010,31(4): 86-88.
YUAN Zhao-hui, MA Yu. Hydraulic impulse test system based on pid neural networks [J]. Chinese Hydraulics & Pneumatics, 2010, 31(4): 86-88.
[4] 王双,邓乾坤,张斌.高压伺服控制脉冲试验台液压系统设计[J].液压气动与密封,2012,32(9): 21-24.
WANG Shuang, DENG Qian-kun, ZHANG Bin. The hydrauhc system design of high pressure servo-control pulse test bed [J]. Hydraulics Pneumatics & Seals, 2012, 32(9): 21-24.
[5] KAMESWARA RAO C V, ESWARAN K. Pressure transients in incompressible fluid pipeline networks [J]. Nuclear Engineering and Design, 1999, 188(1): 111.
[6] ABDUL J, GAUTHAM, REMYA S. A simplified Genetic Algorithm for online tuning of PID controller in LabVIEW[C]∥2009 World Congress on Nature & Biologically Inspired Computing. Coimbatore: IEEE, 2009: 1516-1519.
[7] 王春行.液压伺服控制系统[M].北京:机械工业出版社,1981: 142-149.
[8] VUGDELIJA M. Determination of a time step interval in hydraulic system transients simulation[J]. Advances in Engineering Software, 1999, 31 (2): 143-148.
[1] OUYANG Xiao-ping, ZHAO Tian-fei, LI Feng, YANG Shang-bao, ZHU Ying, YANG Hua-yong. Integral variable PI control on flow load simulator of aircraft hydraulic system[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(6): 1111-1118.
[2] DING Ru-qi, XU Bing, ZHANG Jun-hui. Coupling property of pressure and velocity compound control in individual metering systems[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(6): 1126-1134.
[3] ZHANG Qiang, WEI Jian-hua, SHI Wen-zhuo. Blank holder force control of hydraulic cushion with soft relief fuzzy PID controller[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(6): 1143-1152.
[4] NI Jing, FENG Guo-dong, WANG Zhi-qiang, GAO Dian-rong, XU Ming. Optimization design of internal curve type water hydraulic motor with plain flow distribution[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(5): 946-953.
[5] DING Jia-xin, CHEN Ying-long, ZHOU Hua. Effect on residual wall thickness of parts with floating core injection of water-assisted injection molding[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(5): 937-945.
[6] XU Bing, SU Qi, ZHANG Jun-hui, LU Zhen-yu. Analysis for drive circuit and improved current controller for proportional amplifier[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(4): 800-806.
[7] DU Rui long, CHEN Ying long, ZHOU Hua, WANG Jia. New distributing mechanism for high speed single-piston axial piston pump[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1902-1910.
[8] WANG Jian sen, LIU Yao lin, JI Hong, WANG Peng fei. Transient simulation on flow force of non-circular opening spool valve[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1922-1926.
[9] HU Xiao dong, GU Lin yi, ZHANG Fan meng. High-speed on/off valves applied in digital displacement motor[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1551-1560.
[10] QUAN Ling xiao, LI Dong, LIU Song, LI Chang chun, KONG Xiang dong. Influence factors analysis on frequency domain characteristics of expansion loop[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1065-1072.
[11] ZHAO Peng yu, CHEN Ying long, ZHOU Hua, YANG Hua yong. Potential energy recovery and energy management strategy of hydraulic hybrid excavator[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(5): 893-901.
[12] LIAO Xiang ping, GONG Guo fang, PENG Xiong bin, WU Wei qiang. Jam breakout characteristic of tunnel boring machine based on hydro viscous drive mechanism[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(5): 902-912.
[13] ZHAO Peng yu, CHEN Ying long, SUN Jun, ZHOU Hua. Modeling and simulation of well test and production test system based on hydraulic balance[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 650-656.
[14] WANG Xuan, TAO Jian feng, ZHANG Feng rong, WU Ya jin, LIU Cheng liang. Precision position control of pump controlled asymmetric cylinder[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 597-602.
[15] LIU Tong, GONG Guo fang, PENG Zuo, WU Wei qiang, PENG Xiong bin. Hybrid cutterhead driving system for TBM based on hydraulic transformer[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(3): 419-427.