Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (8): 1587-1592    DOI: 10.3785/j.issn.1008-973X.2020.08.018
    
Temperature control test of scaled model of high capacity hypergravity centrifuge
Wei-an LIN(),Chuan-xiang ZHENG*(),Jian-qun JIANG,Dao-sheng LING,Yun-min CHEN
Research Center of Hypergravity, MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(1639KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The temperature rise in the main engine room caused by the wind resistance power is high when the acceleration of the high gravity centrifuge reaches more than 1000g. The corresponding temperature control strategy was proposed through the study of the heat generation mechanism and heat dissipation mechanism of the high gravity centrifuge. In order to solve the above problem, a 1∶20 scaled test was carried out on a large capacity geocentrifuge with an acceleration of 1500g. The principle of the same friction heat generation caused by the same air velocity flowing through the side wall was used for the simulation test, that is, the linear velocity at the outermost end of the high-speed rotor was the same as 290 m/s, and the wind resistance power test and the temperature control methods study were conducted in this speed. The influence of the vacuum degree, the temperature of the side wall cooler and the volume flow of the coolant in the side wall cooler on the temperature of the main engine room was summarized. Thus, a temperature control scheme of centrifugal hypergravity and interdisciplinary experiment facility (CHIEF) was proposed. The test results from the scale model can provide a design reference for the design of the prototype.



Key wordshigh gravity centrifuge      wind resistance power      heat generation      heat dissipation      vacuum      liquid cooling     
Received: 14 January 2020      Published: 28 August 2020
CLC:  TH 3  
Corresponding Authors: Chuan-xiang ZHENG     E-mail: inweian@zju.edu.cn;zhchx@zju.edu.cn
Cite this article:

Wei-an LIN,Chuan-xiang ZHENG,Jian-qun JIANG,Dao-sheng LING,Yun-min CHEN. Temperature control test of scaled model of high capacity hypergravity centrifuge. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1587-1592.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.08.018     OR     http://www.zjujournals.com/eng/Y2020/V54/I8/1587


大容量超重力离心机温控缩比模型试验

为了解决超重力离心机在加速度大于1000g时由于风阻功率引起的主机室温升超高的问题,通过对超重力离心机产热机理及散热机理的研究,提出对应的温度控制策略. 对超重力加速度为1500g的大容量土工离心机进行1∶20缩比,基于以相同空气流速流过侧壁引起的摩擦产热相同的原理进行模拟试验,即在高速转子最外端线速度同为290 m/s下进行风阻功率测试及温度调控试验研究. 总结缩比离心试验机机室内的真空度、侧壁冷却器温度、侧壁冷却器内冷却液体积流量等对主机室温度的影响规律,得到最佳温控调节方案,提出超重力离心模拟与试验装置(CHIEF)离心机室温控方案. 缩比模拟试验结果可为原型机的设计提供设计参考.


关键词: 超重力离心机,  风阻功率,  产热,  散热,  真空,  液冷 
Fig.1 Schematic diagram of wind resistance power test
Fig.2 Main view of experimental device of scaled model
Fig.3 Scale diagram of high speed rotor
Fig.4 Installation drawing of insulated main engine room
Fig.5 Refrigerator with constant temperature control
p/kPa Δt1 Q1/kW Q2/kW Q/kW Pin/kW
1 4.37 3.61 0.264 3.874 4.280
3 4.13 3.41 0.355 3.765 4.708
5 4.75 3.92 0.471 4.391 5.375
10 5.80 4.79 0.611 5.401 6.450
30 9.70 8.01 1.090 9.100 11.118
50 12.10 9.99 1.994 11.984 15.840
Tab.1 Experimental parameter record form of scaled model
Fig.6 Comparison of experimental wind resistance power and input power
Fig.7 Experimental results of temperature comparison with and without sidewall cooling (10 kPa)
Fig.8 Temperature in main engine room under different pressures
Fig.9 Relation curve between temperature and absolute pressure
[1]   YIN Y H, DOU L L Aerodynamic power of geotechnical centrifuge[J]. Advanced Materials Research, 2012, 421: 788- 791
[2]   YU H, YIN Y H, WAN Q. Wind resistance and flow characteristic analysis of geotechnical centrifuges based on computational fluid dynamics [C] // 19th International Conference on Finite Elements in Flow Problems. Rome: Elsevier, 2017.
[3]   王永志, 陈卓识, 孙锐 土工离心机稳态风阻功率简化估算方法与冷却设计优化[J]. 地震工程与工程振动, 2014, 34 (Suppl.1): 909- 914
WANG Yong-zhi, CHEN Zhuo-shi, SUN Rui Simplified calculation technique of steady-state wind resistance power for geotechnical centrifuge and optimization cooling design[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34 (Suppl.1): 909- 914
[4]   KRISHNAIAH S, SINGH D N. Centrifuge modeling of heat and mass transfer through soils [C]// 12th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering. Singapore: [s.n.], 2003: 393-396.
[5]   邢建营, 邢义川, 梁建辉 土工离心模型试验研究的进展与思考[J]. 水利与建筑工程学报, 2005, 3 (1): 27- 31
XING Jian-ying, XING Yi-chuan, LIANG Jian-hui Development and thoughts of geotechnical centrifuge modeling[J]. Journal of Water Resources and Architectural Engineering, 2005, 3 (1): 27- 31
doi: 10.3969/j.issn.1672-1144.2005.01.008
[6]   林伟岸, 陈云敏, 杜尧舜, 等 高校建设国家重大科技基础设施机制的探索与实践[J]. 实验技术与管理, 2019, 36 (4): 250- 252
LIN Wei-an, CHEN Yun-min, DU Yao-shun, et al Exploration and practice on mechanism of constructing national major science and technology infrastructure in colleges and universities[J]. Experimental Technology and Management, 2019, 36 (4): 250- 252
[7]   王永志. 大型动力离心机设计理论与关键技术研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2013.
WANG Yong-zhi. Study on design theory and key technology of large dynamic centrifuge [D]. Haerbin: Institute of Engineering Mechanics, China Earthquake Administration, 2013.
[8]   NICOLAS-FONT J. Design of geotechnical centrifuge [C]// Centrifuge 88. Rotterdam: Balkema, 1988: 189-192.
[9]   濮家骝 土工离心模型试验及其应用的发展趋势[J]. 岩土工程学报, 1996, 18 (5): 92- 94
PU Jia-liu Development trend of the geotechnical centrifuge modeling test and application[J]. Chinese Journal of Geotechnical Engineering, 1996, 18 (5): 92- 94
doi: 10.3321/j.issn:1000-4548.1996.05.018
[10]   CRAIG W H Edouard phillips and the idea of centrifuge modeling[J]. Geotechnique, 1989, (39): 679- 700
[11]   郑传祥, 陈建阳, 蒋建群, 等 低真空度下土工离心机产热机理试验研究[J]. 装备环境工程, 2020, 17 (3): 84- 88
ZHENG Chuan-xiang, CHEN Jian-yang, JIANG Jian-qun, et al Experimental study on heat generation mechanism of geotechnical centrifuge under different vacuum degrees[J]. Equipment Environmental Engineering, 2020, 17 (3): 84- 88
[12]   郝雨, 尹益辉, 万强, 等 基于CFD 的土工离心机风阻及流场特性分析[J]. 装备环境工程, 2018, 15 (2): 52- 56
HAO Yu, YIN Yi-hui, WAN Qiang, et al Wind resistance and flow field characteristic analysis of geotechnical centrifuges based on CFD[J]. Equipment Environmental Engineering, 2018, 15 (2): 52- 56
[13]   DU Y L, ZHU S Z, LIU L Y, et al. LXJ-4-450 geotechnical centrifuge in Beijing [C] // Centrifuge 94. Singapore: [s.n.], 1994: 35-39.
[14]   KRISHNAIAH S, SINGH D N Determination of thermal properties of soils in a geotechnical centrifuge[J]. Journal of Testing and Evaluation, 2006, 34 (4): 319- 326
[15]   白冰, 周健 土工离心模型试验技术的一些进展[J]. 大坝观测与土工测试, 2001, 25 (1): 36- 39
BAI Bing, ZHOU Jian Some advances in geotechnical centrifuge model test technology[J]. Dam Observation and Geotechnical Tests, 2001, 25 (1): 36- 39
[16]   SAWADA M, SOSHI N, TETSUJI O New rapid evaluation for long-term behavior in deep geological repository by geotechnical centrifuge-part 2: numerical simulation of model tests in isothermal condition[J]. Rock Mechanics and Rock Engineering, 2017, 50 (1): 159- 169
doi: 10.1007/s00603-016-1061-6
[17]   郑传祥, 蒋建群, 林伟岸, 等. 一种真空环境下土工离心机空气摩擦产热量测试装置: CN201820875384.5[P]. 2019-02-15.
[18]   DONG-SOO K, NAM-RYONG K, CHOO Y W, et al A newly developed slate of the art geotechnical centrifuge in Korea[J]. Journal of Civil Engineering, 2013, 17 (1): 77- 84
[19]   杜延龄 大型土工离心机基本设计原则[J]. 岩土工程学报, 1993, 15 (6): 10- 17
DU Yan-ling Fundamental design principles of large geotechnical centrifuge[J]. Chinese Journal of Geotechnical Engineering, 1993, 15 (6): 10- 17
doi: 10.3321/j.issn:1000-4548.1993.06.002
[20]   孙悦, 袁晓铭, 王永志, 等 NEES系统中振动离心机最新进展及国内振动离心机发展设想[J]. 世界地震工程, 2010, 26 (1): 31- 39
SUN Yue, YUAN Xiao-ming, WANG Yong-zhi, et al Lastest progress of centrifugal shakers in NEES and developmental conception of domestic centrifugal shakers[J]. World Earthquake Engineering, 2010, 26 (1): 31- 39
[21]   郝雨, 尹益辉, 万强, 等 土工离心机风阻计算方法的对比研究[J]. 环境装备工程, 2018, 15 (3): 61- 66
HAO Yu, YIN Yi-hui, WAN Qiang, et al Comparative study on estimation methods of wind resistance of geotechnical centrifuges[J]. Equipment Environmental Engineering, 2018, 15 (3): 61- 66
[22]   尹益辉, 余绍蓉, 冯晓军, 等 密闭机室型土工离心机的风阻功率[J]. 绵阳师范学院学报, 2010, 29 (2): 1- 5
YIN Yi-hui, YU Shao-rong, FENG Xiao-jun, et al Aerodynamic power of geotechnical centrifuge with closed chamber[J]. Journal of Mianyang Normal University, 2010, 29 (2): 1- 5
doi: 10.3969/j.issn.1672-612X.2010.02.001
[23]   尹益辉, 刘远东, 王兴伦, 等 旋臂式离心机负载转矩及其驱动电机额定功率的计算方法[J]. 机电工程, 2011, 28 (6): 659- 662
YIN Yi-hui, LIU Yuan-dong, WANG Xin-lun, et al Calculations of load rotational moment and rating power of centrifuges with rotation arms[J]. Journal of Mechanical and Electrical Engineering, 2011, 28 (6): 659- 662
doi: 10.3969/j.issn.1001-4551.2011.06.005
[24]   郑传祥, 魏双, 何建龙, 等. 气-液换热器传热系数测定装置: CN201510433423.7[P]. 2015-11-25.
[1] Meng-ting YU,Ying-ping WANG,Chu-qi SU,Qi TAO,Jian-peng SHI. Research on fuel economy of car trailing semitrailer in platoon[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 455-461.
[2] Xiao-dong PAN,Lian-mo ZHOU,Hong-lei SUN,Yuan-qiang CAI,Li SHI,Zong-hao YUAN. Vacuum preloading test for high moisture content slurry using particle image velocimetry[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1078-1085.
[3] Xiao-teng MIN,Zhi-guo TANG,Qin GAO,An-qi SONG,Shou-cheng WANG. Heat dissipation characteristic of liquid cooling cylindrical battery module based on mini-channel wavy tube[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 463-469.
[4] WU Ya-jun, GU Sai-shuai, QIANG Xiao-bing, HUANG Wei-jun, LU Li-hai, LUO Jia-cheng. Experimental study on ultra-soft soil reinforced by vacuum preloading with flocculation based on skeleton construction[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 735-743.
[5] WANG Tao, WANG Liang, LIN Gui ping, BAI Li zhan, LIU Xiang yang, BU Xue qin, XIE Guang hui. Experimental study on performance of liquid cooling garment with application of titanium dioxide nanofluids[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(4): 681-690.
[6] BAO Shu feng, DONG Zhi liang, LOU Yan, MO Hai hong, CHEN Ping shan, ZHOU Hong xin, LUO Yan. Laboratory research on new improvement technology of newly hydraulic reclamation mud with high clay content Ⅱ[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1707-1715.
[7] ZHANG Yi-ping, LI Jian. Laboratory study on drainage mechanism of vacuum preloading method[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(4): 679-685.