Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (8): 1497-1504    DOI: 10.3785/j.issn.1008-973X.2020.08.007
    
Sliding mode control for ball screw drives based on H∞ theory
Jian LI(),Wen-cheng TANG*()
School of Mechanical Engineering, Southeast University, Nanjing 211189, China
Download: HTML     PDF(1331KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A mathematical model with uncertain parameters was established considering the dynamic characteristics of ball screw drives. A sliding mode controller with H∞ performance was designed to eliminate the influence of uncertainties. An exponential disturbance observer was designed to compensate the unknown disturbances of the system. The analyses prove that the control method has L2 gain performance. The trajectory tracking experiments were carried out on the experiment platform of ball screw drives. Results show that the maximum tracking error is 16.85 μm by using H∞ sliding mode controller and 10.18 μm by using H∞ sliding mode controller with the designed observer. After adding a 25 kg mass block on the table, the maximum tracking error is 15.61 μm by using the proposed controller with the designed observer. Results prove that the controller has good performance. The designed observer can improve the control performance. The proposed control method has good performance by comparison with a traditional proportion-proportion integral controller.



Key wordsball screw      sliding mode control      H∞ theory      uncertain system      exponential disturbance observer     
Received: 15 July 2019      Published: 28 August 2020
CLC:  TP 273  
Corresponding Authors: Wen-cheng TANG     E-mail: hellolij@163.com;tangwc@seu.edu.cn
Cite this article:

Jian LI,Wen-cheng TANG. Sliding mode control for ball screw drives based on H∞ theory. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1497-1504.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.08.007     OR     http://www.zjujournals.com/eng/Y2020/V54/I8/1497


基于H∞理论的滚珠丝杠进给系统滑模控制

针对滚珠丝杠进给系统的动态特性,建立参数不确定的数学模型. 为了消除参数不确定的影响,设计满足H∞性能的积分滑模控制器. 针对存在的未知干扰,设计指数干扰观测器进行补偿. 分析结果表明,本研究的控制方法具有L2增益性能. 利用该方法在滚珠丝杠实验台上进行轨迹跟踪实验. 实验结果表明,当使用设计的控制器时,最大跟踪误差为16.85 μm;当使用设计的控制器加上指数干扰观测器时,最大跟踪误差为10.18 μm;在工作台增加25 kg质量块后,当使用设计的控制器加上干扰观测器时,最大跟踪误差为15.61 μm. 实验结果说明所设计的控制器具有较好的性能,并且干扰观测器能够提高控制精度. 与传统的比例-比例积分控制器的对比结果说明本研究的控制方法有较好的综合性能.


关键词: 滚珠丝杠,  滑模控制,  H∞理论,  不确定系统,  指数干扰观测器 
Fig.1 Ball screw drive experimental setup
Fig.2 Two degrees of freedom model
Fig.3 Frequency response functions of table
Fig.4 Block diagram of HISMC
${ { {m_{\rm{1} } } } / {\left( { {\rm{V} } \cdot { {\rm{s} }^{\rm{2} } } \cdot { {\rm{m} }^{ {\rm{ - 1} } } }} \right)} }$ ${ { {m_{\rm{2} } } } / {\left( { {\rm{V} } \cdot { {\rm{s} }^{\rm{2} } } \cdot { {\rm{m} }^{ {\rm{ - 1} } } }} \right)} }$ ${c / {\left( { {\rm{V} } \cdot {\rm{s} } \cdot { {\rm{m} }^{ {\rm{ - 1} } } }} \right)} }$ ${ { {b_{\rm{1} } } } / {\left( { {\rm{V} } \cdot {\rm{s} } \cdot { {\rm{m} }^{ {\rm{ - 1} } } }} \right)} }$ ${ { {b_{\rm{2} } } } / {\left( { {\rm{V} } \cdot {\rm{s} } \cdot { {\rm{m} }^{ {\rm{ - 1} } } }} \right)} }$ ${k / {\left( { {\rm{V} } \cdot { {\rm{m} }^{ {\rm{ - 1} } } }} \right)} }$
1.3016 0.1484 5.3550 ${\rm{8} }{\rm{.085\;4} } \times {\rm{1} }{ {\rm{0} }^{ {\rm{ - 4} } } }$ 1.6103 ${\rm{4} }{\rm{.181\;4} } \times {\rm{1} }{ {\rm{0} }^{\rm{4} } }$
Tab.1 Two degrees of freedom model parameters
Fig.5 Reference trajectory of trajectory tracking experiment
Fig.6 P-PI+VFF+AFF trajectory tracking experiment results
Fig.7 HISMC and EDO trajectory tracking experiment results
Fig.8 Comparison of trajectory tracking experiment results between P-PI+VFF+AFF, HISMC and HISMC+EDO
[1]   赵万华, 张俊, 刘辉, 等 数控机床精度评价新方法[J]. 中国工程科学, 2013, 15 (1): 93- 98
ZHAO Wan-hua, ZHANG Jun, LIU Hui, et al New evaluation method on the precision of NC machine tools[J]. Engineering Sciences, 2013, 15 (1): 93- 98
doi: 10.3969/j.issn.1009-1742.2013.01.018
[2]   卢秉恒, 赵万华, 张俊, 等 高速高加速下的进给系统机电耦合[J]. 机械工程学报, 2013, 49 (6): 2- 11
LU Bing-heng, ZHAO Wan-hua, ZHANG Jun, et al Electromechanical coupling in the feed system with high speed and high acceleration[J]. Journal of Mechanical Engineering, 2013, 49 (6): 2- 11
doi: 10.3901/JME.2013.06.002
[3]   ERKORKMAZ K, KAMALZADEH A High bandwidth control of ball screw drives[J]. CIRP Annals-Manufacturing Technology, 2006, 55 (1): 393- 398
doi: 10.1016/S0007-8506(07)60443-0
[4]   SUN Z, PRITSCHOW G, LECHLER A Enhancement of feed drive dynamics using additional table speed feedback[J]. CIRP Annals-Manufacturing Technology, 2016, 65 (1): 357- 360
doi: 10.1016/j.cirp.2016.04.099
[5]   SUN Z, ZAHN P, VERL A, et al A new control principle to increase the bandwidth of feed drives with large inertia ratio[J]. International Journal of Advanced Manufacturing Technology, 2017, 91 (5?8): 1747- 1752
doi: 10.1007/s00170-016-9895-3
[6]   GORDON D J, ERKORKMAZ K Accurate control of ball screw drives using poleplacement vibration damping and a novel trajectory prefilter[J]. Precision Engineering, 2013, 37 (2): 308- 322
doi: 10.1016/j.precisioneng.2012.09.009
[7]   QIAN R R, LUO M Z, ZHAO J H, et al. Novel sliding mode control for ball screw servo system [C]// International Conference on Mechanical, Industrial, and Manufacturing Technologies. Cape Town: MATEC Web of Conferences, 2016, 54: 03007.
[8]   DONG L, TANG W C Adaptive backstepping sliding mode control of flexible ball screw drives with time-varying parametric uncertainties and disturbances[J]. ISA Transactions, 2014, 53 (1): 110- 116
doi: 10.1016/j.isatra.2013.08.009
[9]   UTKIN V, SHI J X. Integral sliding mode in systems operating under uncertainty conditions [C]// Proceedings of the 35th IEEE Conference on Decision and Control. Lobe: IEEE, 1996: 4591-4596.
[10]   BAO D F, TANG W C, DONG L Integral sliding mode control for flexible ball screw drives with matched and mismatched uncertainties and disturbances[J]. Journal of Central South University, 2017, 24 (9): 1992- 2000
doi: 10.1007/s11771-017-3608-4
[11]   王坤, 王建美, 王芳, 等 非匹配不确定系统的滑模控制及在电机控制中的应用[J]. 控制理论及应用, 2019, 36 (1): 143- 150
WANG Kun, WANG Jian-mei, WANG Fang, et al Sliding mode control for nonlinear system with mismatched uncertainties and application in motor control[J]. Control Theory and Applications, 2019, 36 (1): 143- 150
[12]   WANG N, LIN W Y Robust tracking control of AC servo system including a ball screw[J]. Neurocomputing, 2016, 179: 110- 117
doi: 10.1016/j.neucom.2015.11.073
[13]   LIAN J, ZHAO J Robust H∞ control of uncertain switched systems: a sliding mode control design[J]. Acta Automatica Sinica, 2009, 35 (7): 965- 970
[14]   TOKAT S, EKSIN I, GUZELKAYA M Linear time-varying sliding surface design based on co-ordinate transformation for high-order systems[J]. Transactions of the Institute of Measurement and Control, 2009, 31 (1): 51- 70
doi: 10.1177/0142331208090672
[15]   TOKAT S, EKSIN I, GUZELKAYA M A new design method for sliding mode controllers using a linear time-varying sliding surface[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2002, 216 (6): 455- 466
doi: 10.1177/095965180221600602
[16]   YANG J, LI S H, YU X H Sliding mode control for systems with mismatched uncertainties via a disturbance observer[J]. IEEE Transactions on Industrial Electronics, 2013, 60 (1): 160- 169
doi: 10.1109/TIE.2012.2183841
[17]   董亮. 高速滚珠丝杠进给系统动态特性与控制技术研究[D]. 南京: 东南大学, 2015.
DONG Liang. System dynamics and precision control of high speed ball screw drives [D]. Nanjing: Southeast University, 2015.
[18]   CHOI H H LMI-based sliding surface design for integral sliding mode control of mismatched uncertain systems[J]. IEEE Transactions on Automatic Control, 2007, 52 (4): 736- 742
doi: 10.1109/TAC.2007.894543
[19]   KIM K S, PARK Y, OH S H Designing robust sliding hyperplanes for parametric uncertain systems: a Riccati approach[J]. Automatica, 2000, 36 (7): 1041- 1048
doi: 10.1016/S0005-1098(00)00014-5
[20]   姜伟, 王宏力, 陆敬辉, 等 连续时间多胞线性变参数系统变增益H∞/H2输出反馈控制 [J]. 控制理论与应用, 2016, 33 (9): 1225- 1235
JIANG Wei, WANG Hong-li, LU Jing-hui, et al Gain-scheduled H∞/H2 output feedback controller synthesis for continuous-time polytopic linear parameter varying systems [J]. Control Theory and Applications, 2016, 33 (9): 1225- 1235
doi: 10.7641/CTA.2016.50768
[21]   CHEN W H, BALLANCE D J, GAWEHROP P J, et al A nonlinear disturbance observer for robotic manipulators[J]. IEEE on Industrial Electronics, 2000, 47 (4): 932- 938
doi: 10.1109/41.857974
[1] Jing LI,Chen WANG,Jia-xu ZHANG. Wheel slip tracking control of vehicle based on adaptive fast terminal sliding mode control method[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 169-176.
[2] Yi-feng ZHU,Dang-jian WU,Bing-yang BAI,Hao YUE. Sliding mode proportional integral resonance control for single-phase five-level pulse rectifier[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1578-1586.
[3] Zhao-meng CHEN,Xiao-jun ZHOU,Chen-long YANG,Hao-liang LV,Jie-chao WEI. Emergency braking control strategy for high speed electric drive tracked vehicle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 442-449.
[4] WAGN Yao-yao, GU Lin-yi, CHEN Bai, WU Hong-tao. Nonsingular terminal sliding mode control of underwater vehicle-manipulator system[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 934-942.
[5] ZHOU Hua, CHEN Li, DUAN Deng-ping. Sliding mode control of trajectory tracking for underactuated aerostat[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1412-1420.
[6] LI Guo-fei, TENG Qing-fang, WANG Chuan-lu, ZHANG Ya-qin. FCS-MPC strategy with sliding mode control for PMSM systems driven by four-switch inverters[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 620-627.
[7] GUO Fan, WEI Jian-hua, ZHANG Qiang, XIONG Yi. Hybrid position/pressure control of hydraulic press based on cascade controller[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(10): 1937-1947.
[8] PAN Ning, YU Liang yao, ZHANG Lei, SONG Jian, ZHANG Yong hui. Anti-lock braking control in coordinated braking system considering braking comfort[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 9-16.
[9] ZHOU Feng, GU Lin yi, LUO Gao sheng, CHEN Zong heng. Adaptive backstepping sliding mode control for electro hydraulic proportional propulsion system[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(6): 1111-1118.
[10] WANG Fei, GUAN Cheng, XIAO Yang, LI Wei. Pressure sliding mode control of hydraulic excavator boom potential energy recovery[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 201-208.
[11] WANG Yao-yao, GU Lin-yi, GAO Ming, JIA Xian-jun, ZHU Kang-wu. Nonsingular fast terminal sliding mode control for underwater vehicles[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(9): 1541-1551.
[12] FANG Qiang, ZHOU Qing-hui, FEI Shao-hua, MENG Xiang-lei, BA Xiao-fu, ZHANG Yan-ni, KE Ying-lin. Pneumatic servo control system design for pressure foot of an end-effector[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(8): 1442-1450.
[13] QIAN Peng-fei, TAO Guo-liang, MENG De-yuan, ZHONG Wei,BAN Wei, ZHU Xiao. Sliding mode trajectory tracking control of electro-pneumatic clutch actuator[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(6): 1102-1106.
[14] QUAN Yu, NIAN Heng. Resonant-based sliding mode control of doubly-fed induction generator connected to unideal grid[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(4): 575-580.
[15] MENG De-yuan, TAO Guo-liang, QIAN Peng-fei, BAN Wei. Adaptive robust control of pneumatic force servo system[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(9): 1611-1619.