Please wait a minute...
J4  2013, Vol. 47 Issue (9): 1611-1619    DOI: 10.3785/j.issn.1008-973X.2013.09.015
    
Adaptive robust control of pneumatic force servo system
MENG De-yuan, TAO Guo-liang, QIAN Peng-fei, BAN Wei
State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027,China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to realize precision force trajectory tracking control of pneumatic force servo system,the control valve flow characteristics and the thermodynamic properties of the air inside pneumatic cylinder chambers were studied and then a nonlinear model of the system was developed. Since the thermodynamic model order reduction will introduce significant modeling errors, temperature observers were constructed to estimate the chamber temperature. Then, an adaptive robust controller based on full-order thermodynamic model was proposed. The controller employs on-line parameter estimation to reduce the extent of parametric uncertainties, and utilizes a nonlinear robust control method to attenuate the effects of parameter estimation errors, unmodelled dynamics and disturbances. Therefore, the prescribed output force transient control performance and high tracking accuracy are guaranteed. Experimental results demonstrate that when a sinusoidal trajectory with amplitude of 100 N, frequency of 0.5 Hz, the average output force tracking error is 1.4 N and the maximum output force tracking error is 3.9 N.It is proven that the proposed controller is effective and the adoption of full-order thermodynamic model is necessary.



Published: 01 September 2013
CLC:  TP 273  
Cite this article:

MENG De-yuan, TAO Guo-liang, QIAN Peng-fei, BAN Wei. Adaptive robust control of pneumatic force servo system. J4, 2013, 47(9): 1611-1619.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2013.09.015     OR     http://www.zjujournals.com/eng/Y2013/V47/I9/1611


气动力伺服系统的自适应鲁棒控制

为实现具有输出力轨迹控制能力的气动力伺服系统,研究了气体通过比例方向控制阀阀口的流动以及气缸腔内气体的热力过程,建立系统的非线性模型.针对忽略温度动态而导致的较大的建模误差,构造了状态观测器来估计腔内气体温度,在此基础上设计了基于全阶热力学模型的气动力伺服系统的自适应鲁棒控制器.该控制器通过在线参数估计来减小模型中参数的不确定性,利用非线性鲁棒控制来抑制参数估计误差、未建模动态和干扰的影响,从而保证一定的瞬态性能和高的气缸输出力轨迹控制精度.实验表明:当系统跟踪幅值为100 N,频率为0.5 Hz的正弦期望轨迹时,平均输出力跟踪误差为1.4 N、最大输出力跟踪误差为3.9 N;基于全阶热力学模型进行控制器设计是必要的,自适应鲁棒控制器是有效的.

[1] 谢建蔚,陶国良,周洪.气动人工肌肉关节的饱和自适应鲁棒控制[J]. 浙江大学学报:工学版,2008, 42(6): 1032-1035.
XIE Jian-wei, TAO Guo-liang, ZHOU Hong. Tracking control simulation of pneumatic muscle actuator joint using saturated adaptive robust control [J]. Journal of Zhejiang University: Engineering Science, 2008, 42(6): 1032-1035.
[2] 孟德远,陶国良,刘昊,等.基于LuGre模型的气缸摩擦力特性研究[J]. 浙江大学学报:工学版,2012, 46(6):1027-1033.
MENG De-yuan, TAO Guo-liang, LIU Hao, et al. Analysis of friction characteristics of pneumatic cylinders based on LuGre model [J]. Journal of Zhejiang University: Engineering Science, 2012, 46(6): 1027-1033.
[3] RICHER E, HURMUZLU Y. A high performance pneumatic force actuator system: part I-nonlinear mathematic model [J].Journal of Dynamic Systems, Measurement and Control, 1999, 122(9):416425.
[4] RICHER E, HURMUZLU Y. A high performance pneumatic force actuator system: part II- nonlinear controller design [J].Journal of Dynamic Systems, Measurement and Control, 2000, 123(9):426-434.
[5] SHEN X, GOLDFARB M. Simultaneous force and stiffness control of a pneumatic actuator [J]. Journal of Dynamic Systems, Measurement, and Control, 2007, 129(7):425-434.
[6] KHAYATI K, BIGRAS P, DESSAINT L. Force control loop affected by bounded uncertainties and unbounded inputs for pneumatic actuator systems [J].Journal of Dynamic Systems, Measurement, and Control, 2008, 130(2):01100710110079.
[7] SOMYOT K, MANUKID P. Force control in a pneumatic system using hybrid adaptive neuro-fuzzy model reference control [J]. Mechatronics, 2005, 15:23-41.
[8] MENG D, TAO G, CHEN J, BAN W. Modeling of a pneumatic system for high-accuracy position control [C]∥ International Conference on Fluid Power and Mechatronics. China: IEEE, 2011:505-510.
[9] 曹剑,朱笑丛,陶国良.气动伺服控制中特性参数与结构参数的辨识[J].浙江大学学报:工学版,2010,44(3): 569-573.
CAO Jian, ZHU Xiao-cong, TAO Guo-liang. Identification of characteristic parameters and structure parameters in pneumatic servo control [J]. Journal of Zhejiang University: Engineering Science, 2010, 44(3): 569-573.
[10] CARNEIRO J F, ALMEIDA F G. Reduced-order thermodynamic models for servo-pneumatic actuator chambers [J]. Proc IMechE, Part I, Journal of Systems and Control Engineering, 2006, 220(3): 301-314.
[11] BEATER P. Pneumatic drives [R].New York: Springer, 2007.
[12] YAO B, TOMIZUKA M. Adaptive robust control of SISO nonlinear systems in semi-strict feedback forms [J]. Automatica, 2001, 37(9):1305-1321.
[13] YAO B. Advanced motion control: from classical PID to nonlinear adaptive robust control [C]∥ International Workshop on Advanced Motion Control. Nagaoka: IEEE, 2010:815-829.
[14] ZHU X, TAO G, YAO B, et al. Adaptive robust posture control of a parallel manipulator driven by pneumatic muscles[J]. Automatica, 2008, 44(9): 2248-2257.
[15] CARNEIRO J F, ALMEIDA F G. Heat transfer evaluation of industrial pneumatic cylinders [J]. Proc IMechE, Part I, Journal of Systems and Control Engineering, 2007, 221(2): 119-128.

[1] CHENG Sen-lin, LI Lei, ZHU Bao-wei, CHAI Yi. Computing method of RSSI probability centroid for location in WSN[J]. J4, 2014, 48(1): 100-104.
[2] FANG Qiang, CHEN Li-peng, FEI Shao-hua, LIANG Qing-xiao, LI Wei-ping. Model reference adaptive control system design of localizer[J]. J4, 2013, 47(12): 2234-2242.
[3] LUO Ji-Liang, WANG Fei,SHAO Hui,ZHAO Liang-Xu. Optimal Petri-net supervisor synthesis based on the constraint transformation[J]. J4, 2013, 47(11): 2051-2056.
[4] REN Wen, XU Bu-gong. Development of multi-speed electronic let-off system for warp knitting machine based on FI-SNAPID algorithm[J]. J4, 2013, 47(10): 1712-1721.
[5] LI Qi-an, JIN Xin. Approximate decoupling multivariable generalized predictive control of diagonal CARIMA model[J]. J4, 2013, 47(10): 1764-1769.
[6] YE Ling-yun,CHEN Bo,ZHANG Jian,SONG Kai-chen. Feedback control of high precision dynamic standard source  based on ripple-free deadbeat algorithm[J]. J4, 2013, 47(9): 1554-1558.
[7] YE Ling-jian, MA Xiu-shui. Optimal control strategy for chemical processes
based on soft-sensoring technique
[J]. J4, 2013, 47(7): 1253-1257.
[8] HUANG Xiao-shuo,HE Yan,JIANG Jing-ping. Internet based control strategy for brushless DC motor drive systems    [J]. J4, 2013, 47(5): 831-836.
[9] HE Nai-bao, GAO Qian, XU Qi-hua, JIANG Chang-sheng. Anti-interference control of NSV based on adaptive observer[J]. J4, 2013, 47(4): 650-655.
[10] ZHU Yu-chen, FENG Dong-qin, CHU Jian. EPA based communication scheduling algorithm and
control scheme for block stream
[J]. J4, 2012, 46(11): 2097-2102.
[11] LIU Zhi-peng, YAN Wen-jun. Intelligent modeling and compound control of pre-grinding system[J]. J4, 2012, 46(8): 1506-1511.
[12] ZHU Kang-wu, GU Lin-yi, MA Xin-jun, XU Ben-tao. Studies on multivariable robust output feedback control for
underwater vehicles
[J]. J4, 2012, 46(8): 1397-1406.
[13] FEI Shao-hua,FANG Qiang,MENG Xiang-lei,KE Ying-lin. Countersink depth control of robot drilling based on pressure
foot displacement compensation
[J]. J4, 2012, 46(7): 1157-1161.
[14] YU Xiao-ming, JIANG Jing-ping. Adaptive networked control system based on delay prediction
using neural network
[J]. J4, 2012, 46(2): 194-198.
[15] LUO Li-hua, GONG Li-long, LI Ping, WANG Hui. Two-mode adaptive cruise control design with
humans’ driving habits consideration
[J]. J4, 2011, 45(12): 2073-2078.