|
|
HVAC demand response strategy experiment and simulation considering active energy storage |
Qing-long MENG(),Xiao-xiao REN,Wen-qiang WANG,Yang LI,Cheng-yan XIONG |
School of Civil Engineering, Chang’an University, Xi’an 710061, China |
|
|
Abstract A demand response (DR) strategy which considers active energy storage was proposed in order to enhance the stability of the power grid and fully use heating, ventilation and air-conditioning (HVAC) system in the summer to participate in the "peak shaving" demand response. A full-scale variable air volume HVAC experimental platform was used to conduct physical experiments and TRNSYS simulations on the strategy and the regional temperature reset strategy. Results show that active energy storage strategy can provide stable peak load for the power grid while reducing the impact on users’ thermal comfort compared with the global temperature adjustment (GTA) strategy. For the whole cooling season, the air-conditioning system saved operation cost under the active energy storage strategy while non-energy storage conventional operation strategy was adopted all the days. Cost-saving rates were more obvious compared to the GTA strategy during DR and conventional operation strategy of non-energy storage during non-DR.
|
Received: 02 June 2020
Published: 30 July 2021
|
|
Fund: 陕西省重点研发计划资助项目(2020NY-204);山东省可再生能源建筑应用技术重点实验室开放课题资助项目(JDZDS02) |
考虑主动储能的HVAC需求响应策略实验与模拟
为了增强电网的稳定性和充分利用集中式空调(HVAC)系统在夏季参与“削峰”需求响应的潜力,提出考虑主动储能的需求响应(DR)策略. 利用全尺寸变风量HVAC实验平台,对该策略与区域温度重设策略进行物理实验和TRNSYS仿真模拟. 结果表明,与区域温度重设(GTA)策略相比,主动储能策略能够在降低对用户热舒适度影响的同时为电网提供稳定的削峰负荷. 对于整个供冷季而言,相比所有天数均采用非储能常规运行策略,主动储能策略下空调系统节约一定的运行成本;相较于在DR时采用GTA策略且非DR时采用非储能常规运行策略,主动储能策略的节费优势更大.
关键词:
集中式空调(HVAC),
需求响应,
主动储能,
空气源热泵,
TRNSYS
|
|
[1] |
LI W, XU P, LU X, et al Electricity demand response in China: status, feasible market schemes and pilots[J]. Energy, 2016, 114: 981- 994
doi: 10.1016/j.energy.2016.08.081
|
|
|
[2] |
DONG J, XUE G, LI R Demand response in China: regulations, pilot projects and recommendations–a review[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 13- 27
doi: 10.1016/j.rser.2015.12.130
|
|
|
[3] |
WANG J, BLOYD C N, HU Z, et al Demand response in China[J]. Energy, 2010, 35 (4): 1592- 1597
doi: 10.1016/j.energy.2009.06.020
|
|
|
[4] |
YANG C J Opportunities and barriers to demand response in China[J]. Resources, Conservation and Recycling, 2017, 121: 51- 55
doi: 10.1016/j.resconrec.2015.11.015
|
|
|
[5] |
许鹏, 陈永保, 李伟林. 建筑需求响应控制及应用技术[M]. 北京: 中国建筑工业出版社, 2020.
|
|
|
[6] |
程媛, 刘士友, 程小明 定频空调负荷参与需求响应的研究现状[J]. 电力科学与工程, 2020, 36 (1): 9- 17 CHENG Yuan, LIU Shi-you, CHENG Xiao-ming Research status of fixed-frequency air-conditioning load participating in demand response[J]. Electric Power Science and Engineering, 2020, 36 (1): 9- 17
doi: 10.3969/j.ISSN.1672-0792.2020.01.002
|
|
|
[7] |
MOTEGI N, PIETTE M A, WATSON D S, et al. Introduction to commercial building control strategies and techniques for demand response[R]. California: Lawrence Berkeley National Laboratory, 2007.
|
|
|
[8] |
WANG S, TANG R Supply-based feedback control strategy of air-conditioning systems for direct load control of buildings responding to urgent requests of smart grids[J]. Applied Energy, 2017, 201: 419- 432
doi: 10.1016/j.apenergy.2016.10.067
|
|
|
[9] |
WANG S, GAO D, TANG R, et al Cooling supply-based HVAC system control for fast demand response of buildings to urgent requests of smart grids[J]. Energy Procedia, 2016, 103: 34- 39
doi: 10.1016/j.egypro.2016.11.245
|
|
|
[10] |
TANG R, WANG S, GAO D C, et al A power limiting control strategy based on adaptive utility function for fast demand response of buildings in smart grids[J]. Science and Technology for the Built Environment, 2016, 22 (6): 810- 819
doi: 10.1080/23744731.2016.1198214
|
|
|
[11] |
周磊. 空调负荷的动态需求响应理论及其应用研究[D]. 南京: 东南大学, 2017. ZHOU Lei. Dynamic demand response theory of air conditioning load and its application research[D]. Nanjing: Southeast University, 2017.
|
|
|
[12] |
杨济如, 石坤, 崔秀清, 等 需求响应下的变频空调群组削峰方法[J]. 电力系统自动化, 2008, 42 (24): 44- 52 YANG Ji-ru, SHI Kun, CUI Xiu-qing, et al Peak clipping method for variable frequency air conditioning group under demand response[J]. Power System Automation, 2008, 42 (24): 44- 52
|
|
|
[13] |
张天伟, 谢畅, 王蓓蓓, 等 美国商业建筑空调负荷控制策略及其在自动需求响应系统中的整合应用[J]. 电力需求侧管理, 2016, 18 (6): 60- 64 ZHANG Tian-wei, XIE Chang, WANG Bei-bei, et al The commercial building air conditioning load control strategies and its comprehensive application in automated demand response system of the U. S[J]. Power Demand Side Management, 2016, 18 (6): 60- 64
doi: 10.3969/j.issn.1009-1831.2016.06.015
|
|
|
[14] |
孔赟, 潘棋, 王蓓蓓, 等 空调自动需求响应控制策略在美国商业建筑中的应用案例分析[J]. 电力需求侧管理, 2017, 19 (1): 60- 64 KONG Yun, PAN Qi, WANG Bei-bei, et al An appli- cation case study of automatic demand response control strategy for air conditioning in commercial buildings in the United States[J]. Power Demand Side Management, 2017, 19 (1): 60- 64
doi: 10.3969/j.issn.1009-1831.2017.01.016
|
|
|
[15] |
XU P, HAVES P Case study of demand shifting with thermal mass in two large commercial buildings[J]. ASHRAE Transactions, 2006, 112: 572- 580
|
|
|
[16] |
CUI B, GAO D C, XIAO F, et al Model-based optimal design of active cool thermal energy storage for maximal life-cycle cost saving from demand management in commercial buildings[J]. Applied Energy, 2017, 201: 382- 396
doi: 10.1016/j.apenergy.2016.12.035
|
|
|
[17] |
CUI B, GAO D C, WANG S, et al Effectiveness and life-cycle cost-benefit analysis of active cold storages for building demand management for smart grid applications[J]. Applied Energy, 2015, 147: 523- 535
doi: 10.1016/j.apenergy.2015.03.041
|
|
|
[18] |
陈东文, 刘育权, 李勇, 等 用于削减工业园区用电功率峰值的蓄冷空调系统的规划建模与优化[J]. 电力自动化设备, 2017, 37 (6): 94- 100 CHEN Dong-wen, LIU Yu-quan, LI Yong, et al Planning modeling and optimization of cold storage air conditioning system for reducing peak power consumption in industrial parks[J]. Electric Power Automation Equipment, 2017, 37 (6): 94- 100
|
|
|
[19] |
BAETEN B, ROGIERS F, HELSEN L Reduction of heat pump induced peak electricity use and required generation capacity through thermal energy storage and demand response[J]. Applied Energy, 2017, 195 (1): 184- 195
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|