Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (5): 935-947    DOI: 10.3785/j.issn.1008-973X.2021.05.014
    
Study on flexible operation region of power system considering source and load fluctuation
Fu-lin ZHAO1(),Tong ZHANG1,Guang MA1,Zhe CHEN1,Chuang-xin GUO1,*(),Jin-jiang ZHANG2
1. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
2. College of Automation and Electrical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
Download: HTML     PDF(1326KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to evaluate the power system’s ability to cope with various uncertain factors, a novel concept named power system flexible operation region (PSFOR) was proposed by taking the source and load fluctuation of the system as the research object, which can be used to assess the maximum range of uncertainties that can be accepted by power grid under a certain level of flexible operation. The boundary and the application scope of the PSFOR were expounded on this basis, then an optimization model including source-load fluctuation ranges as well as operating economy was constructed. The extreme scenario method (ESM) and C&CG-based robust optimization (CRO) algorithm were put forward to solve the above model. Simulations on 6-bus system and IEEE RTS 39-bus system verified the effectiveness of the proposed methods. Then the average value and the standard deviation were used as evaluation indexes of FOR to analyze the influence of various flexible resources on PSFOR. Results show that the PSFOR can effectively reflect the operation state and the uncertainty range that can be accepted, and further provide theoretical guidance for the planning and dispatching of power grid.



Key wordswind power integration      demand response      flexible operation region      extreme scenario      robust optimization     
Received: 17 May 2020      Published: 10 June 2021
CLC:  TM 732  
Fund:  国家重点研发计划资助项目(2017YFB0902600);国家电网公司科技资助项目(52110418000T)
Corresponding Authors: Chuang-xin GUO     E-mail: zhaofulin@zju.edu.cn;guochuangxin@zju.edu.cn
Cite this article:

Fu-lin ZHAO,Tong ZHANG,Guang MA,Zhe CHEN,Chuang-xin GUO,Jin-jiang ZHANG. Study on flexible operation region of power system considering source and load fluctuation. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 935-947.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.05.014     OR     http://www.zjujournals.com/eng/Y2021/V55/I5/935


考虑源-荷波动的电力系统灵活性运行域研究

为了评估电力系统应对和响应不确定因素的能力,以系统的源-荷波动作为研究对象,提出电力系统灵活性运行域(PSFOR)的概念,即在保证一定灵活性运行水平下电力系统所能接受的最大不确定性因素波动范围. 在此基础上,阐述灵活性运行域的边界和应用范围,并构建包含源-荷波动区间和运行经济性的数学优化模型,提出极限场景法(ESM)和基于列和约束生成的鲁棒优化算法(CRO)对模型进行求解. 通过对6节点系统和IEEE RTS-39节点系统进行仿真计算验证所提算法的合理性和有效性,并将平均值和标准差作为灵活性运行域的评价指标,进一步分析各种灵活性资源对运行域的影响. 结果表明,灵活性运行域可以有效反映系统的运行状态和接纳的不确定性范围,能够为电网的规划和调度运行提供一定的理论指导.


关键词: 风电并网,  需求响应,  灵活性运行域,  极限场景,  鲁棒优化 
Fig.1 Flow chart of algorithms for solving PSFOR
Fig.2 Diagram of 6-bus system
时刻 L*/MW Pw*/MW 时刻 L*/MW Pw*/MW
1 373.78 155.26 13 439.16 41.56
2 349.76 186.82 14 416.24 54.22
3 344.56 167.92 15 400.19 47.92
4 340.31 180.52 16 397.89 28.96
5 345.95 186.82 17 413.21 16.30
6 375.48 167.92 18 435.14 22.30
7 422.42 180.52 19 451.94 22.66
8 432.06 142.66 20 458.69 41.56
9 449.82 123.70 21 435.18 60.52
10 456.00 79.48 22 410.32 104.74
11 461.46 35.26 23 416.44 148.96
12 459.86 54.22 24 394.54 174.22
Tab.1 Load and wind power forecast value of 6-bus system
谷时段 平时段 峰时段
00:00~06:00 06:00~08:00
12:00~18:00
21:00~00:00
8:00~12:00
18:00~21:00
Tab.2 Periods of time-of-using pricing
Fig.3 System net load curves before and after implementation of TOU
Fig.4 Results of power system flexible operation region
Fig.5 Effects of wind power/net load weight coefficient on flexible operation region
$\varepsilon $ ESM CRO
S t S t
0 158.83 17.64 162.93 13.71
50 161.56 17.28 164.57 13.48
100 164.51 17.75 166.80 13.96
150 167.18 17.65 168.49 13.71
200 169.17 17.91 169.84 13.93
250 172.65 18.21 172.93 14.26
300 173.70 18.24 173.83 14.50
350 175.96 18.11 176.04 14.26
400 177.42 18.22 177.51 14.39
Tab.3 Wind power FOR area under different tolerances
Fig.6 Impacts of different maximum tolerances on PSFOR
Fig.7 Diagram of IEEE RTS-39-bus system
时刻 L*/MW P* w,1/MW P* w,2/MW 时刻 L*/MW P* w,1/MW P* w,2/MW
1 4983.8 726.3 410.4 13 5945.5 157.8 221.1
2 4663.4 884.1 473.7 14 5669.8 221.1 94.8
3 4594.1 789.6 505.2 15 5335.9 189.6 63.3
4 4537.5 852.6 568.5 16 5305.1 94.8 284.1
5 4612.6 884.1 536.7 17 5509.4 31.5 252.6
6 5006.3 789.6 473.7 18 5801.9 61.5 252.6
7 5632.2 852.6 410.4 19 6025.9 63.3 315.9
8 5760.8 663.3 315.9 20 6115.9 157.8 378.9
9 5997.5 568.5 473.7 21 5802.4 252.6 347.4
10 6080.0 347.4 189.6 22 5471.0 473.7 473.7
11 6152.8 126.3 94.8 23 5552.6 694.8 410.4
12 6131.5 221.1 189.6 24 5260.6 821.1 442.2
Tab.4 Load and wind power forecast value of IEEE RTS-39-bus system
方案 系统基准
运行成本/$
系统基准
运行利润/$
最恶劣工况
运行成本/$
最恶劣工况
运行利润/$
风电FOR
面积/(MW·h)
1 $6.126\;9 \times {10^5}$ $4.705 \times {10^4}$ $6.413\;0 \times {10^5}$ $1.844 \times {10^4}$ ${\rm{1}}{\rm{.255\;5}} \times {10^{\rm{4}}}$
2 $6.060\;4 \times {10^5}$ $4.950 \times {10^4}$ $6.397\;5 \times {10^5}$ $1.579 \times {10^4}$ ${\rm{1}}{\rm{.373\;6}} \times {10^{\rm{4}}}$
3 $6.143\;3 \times {10^5}$ $4.541 \times {10^4}$ $5.459\;7 \times {10^5}$ $1.333 \times {10^4}$ ${\rm{1}}{\rm{.392\;9}} \times {10^{\rm{4}}}$
4 $6.104\;4 \times {10^5}$ $4.510 \times {10^5}$ $6.442\;1 \times {10^5}$ $1.133 \times {10^4}$ ${\rm{1}}{\rm{.506\;3}} \times {10^{\rm{4}}}$
Tab.5 Results of wind power FOR under different schemes
Fig.8 Effects of different factors on wind power FOR
[1]   黄碧斌, 张运洲, 王彩霞 中国“十四五”新能源发展研判及需要关注的问题[J]. 中国电力, 2020, 53 (1): 1- 9
HUANG Bi-bin, ZHANG Yun-zhou, WANG Cai-xia New energy development and issues in China during the 14th five-year plan [J]. Electric Power, 2020, 53 (1): 1- 9
[2]   国家发改委能源研究所. 中国2050高比例可再生能源发展情景暨途径研究[R]. 北京: 国家发展和改革委员会能源研究所, 2015.
[3]   文云峰. 计及预想故障的电力系统风险调度模型与方法研究[D]. 杭州: 浙江大学, 2015.
WEN Yun-feng. Model and algorithm for risk-based dispatch in power systems considering credible contingencies[D]. Hangzhou: Zhejiang University, 2015.
[4]   IEA. Empowering variable renewables-options for flexible electricity flexible electricity systems[R]. Paris: International Energy Agency, 2008.
[5]   North American Electric Reliability Cooperation. Special report: accommodating high levels of variable generation[R]. Princeton: North American Electric Reliability Cooperation, 2009.
[6]   AGENCY I E. Empowering variable renewables-options for flexible electricity systems[M]. Paris: OECD Publishing, 2009: 11-13.
[7]   肖定垚, 王承民, 曾平良, 等 电力系统灵活性及其评价综述[J]. 电网技术, 2014, 8 (6): 1569- 1576
XIAO Ding-yao, WANG Cheng-min, ZENG Ping-liang, et al A survey on power system flexibility and its evaluations[J]. Power System Technology, 2014, 8 (6): 1569- 1576
[8]   李海波, 鲁宗相, 乔颖, 等 大规模风电并网的电力系统运行灵活性评估[J]. 电网技术, 2015, 39 (6): 1672- 1678
LI Hai-bo, LU Zong-xiang, QIAO Ying, et al Assessment on operational flexibility of power grid with grid-connected large-scale wind farms[J]. Power System Technology, 2015, 39 (6): 1672- 1678
[9]   WANG C, LIU F, WANG J, et al Risk-based admissibility assessment of wind generation integration into a bulk power system[J]. IEEE Transactions on Sustainable Energy, 2016, 7 (1): 325- 336
doi: 10.1109/TSTE.2015.2495299
[10]   李星梅, 钟志鸣, 阎洁 大规模风电接入下的火电机组灵活性改造计划[J]. 电力系统自动化, 2019, 43 (3): 51- 56
LI Xing-mei, ZHONG Zhi-ming, YAN Jie, et al Flexibility reformation planning of thermal power units with large-scale integration of wind power[J]. Automation of Electric Power Systems, 2019, 43 (3): 51- 56
doi: 10.7500/AEPS20180213007
[11]   余贻鑫 电力系统安全域方法研究述评[J]. 天津大学学报, 2008, 41 (6): 635- 646
YU Yi-xin Review of study on methodology of security regions of power system[J]. Journal of Tianjin University, 2008, 41 (6): 635- 646
doi: 10.3969/j.issn.0493-2137.2008.06.001
[12]   XIAO J, GU W, WANG C Distribution system security region: definition, model and security assessment[J]. IET Generation, Transmission and Distribution, 2012, 6 (10): 1029- 1035
doi: 10.1049/iet-gtd.2011.0767
[13]   杨明皓, 石亚君 配电变压器cos $\varphi $-P平面经济运行域 [J]. 电网技术, 1999, 23 (11): 10- 13
YANG Ming-hao, SHI Ya-jun Economic operation region of distribution transformers based on cos $\varphi $-P plane [J]. Power System Technology, 1999, 23 (11): 10- 13
doi: 10.3321/j.issn:1000-3673.1999.11.003
[14]   王博, 肖峻, 周济 主动配电网中分布式电源和微网的运行域[J]. 电网技术, 2017, 41 (2): 363- 370
WANG Bo, XIAO Jun, ZHOU Ji Dispatchable region of distribution generators and microgrids in distribution system[J]. Power System Technology, 2017, 41 (2): 363- 370
[15]   刘柳, 王丹, 贾宏杰 综合能源配电系统运行域模型[J]. 电力自动化设备, 2019, 39 (10): 1- 9
LIU Liu, WANG Dan, JIA Hong-jie Operation region model for integrated energy distribution system[J]. Electric Power Automation Equipment, 2019, 39 (10): 1- 9
[16]   CAPASSO A, FALVO M C, LAMEDICA R, et al. A new methodology for power systems flexibility evaluation [C]// 2005 IEEE Russia Power Tech. St. Petersburg: [s.n.], 2005.
[17]   LANNOYE E, FLYNN D, O'MALLEY M Evaluation of power system flexibility[J]. IEEE Transactions on Power Systems, 2012, 27 (2): 922- 931
doi: 10.1109/TPWRS.2011.2177280
[18]   HEDAYATI M, ZHANG J, HEDAM K Wind power dispatch margin for flexible energy and reserve scheduling with increased wind generation[J]. IEEE Transactions on Sustainable Energy, 2015, 6 (4): 1543- 1552
doi: 10.1109/TSTE.2015.2455552
[19]   ZHAO J, ZHENG T, LITVINOV E, et al Variable resource dispatch through do-not-exceed limit[J]. IEEE Transactions on Power Systems, 2015, 30 (2): 820- 828
doi: 10.1109/TPWRS.2014.2333367
[20]   LI P, YU D, YANG M, et al Flexible look-ahead dispatch realized by robust optimization considering CVaR of wind power[J]. IEEE Transactions on Power Systems, 2018, 33 (5): 5330- 5340
doi: 10.1109/TPWRS.2018.2809431
[21]   雷敏, 魏务卿, 曾进辉, 等 考虑需求响应的负荷控制对供电可靠性影响分析[J]. 电力系统自动化, 2018, 42 (10): 53- 59
LEI Min, WEI Wu-qing, ZENG Jin-hui, et al Effect of load control on power supply reliability considering demand response[J]. Automation of Electric Power Systems, 2018, 42 (10): 53- 59
doi: 10.7500/AEPS20180115017
[22]   陈哲, 张伊宁, 马光, 等 计及需求侧响应日前-日内两阶段鲁棒备用优化[J]. 电力系统自动化, 2019, 43 (24): 67- 76
CHEN Zhe, ZHANG Yi-ning, MA Guang, et al Two-stage day-ahead and intra-day robust reserve optimization considering demand response[J]. Automation of Electric Power Systems, 2019, 43 (24): 67- 76
doi: 10.7500/AEPS20181220001
[23]   孔强, 付强, 林亭君, 等 基于成本效益分析的峰谷分时电价优化模型[J]. 电力系统保护与控制, 2018, 46 (15): 60- 67
KONG Qiang, FU Qiang, LIN Ting-jun, et al Optimal peak-valley time-of-use power price model based on cost-benefit analysis[J]. Power System Protection and Control, 2018, 46 (15): 60- 67
doi: 10.7667/PSPC171095
[24]   高亚静, 吕孟扩, 梁海峰, 等 基于离散吸引力模型的用电需求价格弹性矩阵[J]. 电力系统自动化, 2014, 38 (13): 103- 107
GAO Ya-jing, LV Meng-kuo, LIANG Hai-feng, et al Power demand price elasticity matrix based on discrete attraction model[J]. Automation of Electric Power Systems, 2014, 38 (13): 103- 107
doi: 10.7500/AEPS20131015003
[25]   刘小聪, 王蓓蓓, 李杨, 等 智能电网下计及用户侧互动的发电日前调度计划模型[J]. 中国电机工程学报, 2013, 33 (1): 30- 38
LIU Xiao-cong, WANG Bei-bei, LI Yang, et al Day-ahead generation scheduling model considering demand side interaction under smart grid paradigm[J]. Proceedings of the CSEE, 2013, 33 (1): 30- 38
[26]   COBOS N, ARROYO J, ALGUACIL N, et al Robust energy and reserve scheduling considering bulk energy storage units and wind uncertainty[J]. IEEE Transactions on Power Systems, 2018, 33 (5): 5206- 5216
doi: 10.1109/TPWRS.2018.2792140
[27]   陈金富, 孙鑫, 段献忠, 等 基于机会约束规划的含风电场电力系统可用输电能力计算[J]. 中国电机工程学报, 2019, 39 (23): 6804- 6814
CHEN Jin-fu, SUN Xin, DUAN Xian-zhong, et al A chance-constrained approach for available transfer capability evaluation for power systems with wind farm integration[J]. Proceedings of the CSEE, 2019, 39 (23): 6804- 6814
[28]   孙宇军, 李扬, 王蓓蓓, 等 计及不确定性需求响应的日前调度计划模型[J]. 电网技术, 2014, 38 (10): 2708- 2714
SUN Yu-jun, LI Yang, WANG Bei-bei, et al A day-ahead scheduling model considering demand response and its uncertainty[J]. Power System Technology, 2014, 38 (10): 2708- 2714
[1] Tong ZHANG,Li-feng LIU,Cai-ming YANG,Yi-ning ZHANG,Chuang-xin GUO,Dong XIE. Energy system scheduling considering demand response and wind power uncertainty[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1562-1571.