Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (12): 2330-2339    DOI: 10.3785/j.issn.1008-973X.2022.12.002
    
Integrated control of active front steering and direct yaw moment
Bing ZHOU1(),Yang-yi LIU1,Xiao-jian WU2,Tian CHAI1,Yong-qiang ZENG1,Qian-xi PAN1
1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China
2. School of Mechatronics Engineering, Nanchang University, Nanchang 330031, China
Download: HTML     PDF(2400KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Aiming at the coordination problem of active front steering (AFS) and direct yaw moment control (DYC) in vehicle handling and stability control, an optimal phase plane method for stable region partition was proposed. In order to realize the integrated control of handling and stability on lateral and longitudinal dynamic system, a coordination criterion considering tire force characteristics was established based on the proposed method . Firstly, the side slip angle of front and rear tires and the difference between them were used as the characterization of vehicle lateral stability. Combined with the lateral force characteristics of the tires, the lateral state of the vehicle was divided into stable, critically stable and unstable regions. Thereby the coordination criterion between AFS and DYC was established. Secondly, considering the problem of obtaining the state variables when the control algorithm was oriented to practical applications, a state observer based on the super-twisting algorithm was established to estimate the vehicle front and rear wheel slip angle. Finally, the AFS and DYC higher-order sliding mode controller based on the adaptive super-twisting algorithm was designed to eliminate the chattering phenomenon and avoided frequent switching of the controllers during the process of stability control. Experimental results showed that the proposed coordination criteria and control method had positive effect on the coordination of AFS and DYC and obtained great effect on the control of handling and stability.



Key wordsphase plane method      intervention criterion      higher-order sliding mode control      integrated control      active front wheel steering (AFS)      direct yaw moment control (DYC)     
Received: 29 November 2021      Published: 03 January 2023
CLC:  U 461.1  
Fund:  国家自然科学基金资助项目(51875184,52002163); 湖南省自然科学基金资助项目(2019JJ40025)
Cite this article:

Bing ZHOU,Yang-yi LIU,Xiao-jian WU,Tian CHAI,Yong-qiang ZENG,Qian-xi PAN. Integrated control of active front steering and direct yaw moment. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2330-2339.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.12.002     OR     https://www.zjujournals.com/eng/Y2022/V56/I12/2330


主动前轮转向和直接横摆力矩集成控制

针对车辆操稳性控制中功能耦合的主动前轮转向(AFS)与直接横摆力矩控制(DYC)的任务协调问题,提出优化相平面法进行稳定区域划分. 基于所提方法建立轮胎侧向力特性协调准则,实现纵横向动力学系统操稳性集成控制. 以前、后轮侧偏角及两者之差作为车辆横向稳定的表征量,结合轮胎侧向力特性划分车辆横向状态为稳定、临界稳定和失稳状态区间. 建立AFS与DYC的协调准则. 考虑控制算法面向实际应用时状态量的获取问题,建立基于超螺旋算法的状态观测器估计车辆前后轮侧偏角. 分别设计基于自适应超螺旋高阶滑模算法的AFS和DYC控制器,在消除控制器抖振和避免频繁切换的基础上完成稳定性控制. 试验结果表明,所提协调准则和控制算法对协调AFS和DYC有积极作用,且操稳性控制效果良好.


关键词: 相平面法,  介入准则,  高阶滑模控制,  集成控制,  主动前轮转向(AFS ),  直接横摆力矩控制(DYC) 
Fig.1 Seven degrees of freedom vehicle model
参数 数值 参数 数值
整车质量m/kg 1370 轮距B/m 1.55
车辆质心到前轴距离a/m 1.11 整车质心高度hg/m 0.54
车辆质心到后轴距离b/m 1.666 车辆转动惯量Iw/(kg·m2) 1.8
绕Z轴转动惯量Iz/(kg·m2) 4192 车轮滚动半径R/m 0.335
Tab.1 Parameters of vehicle modelling
参数 数值 参数 数值 参数 数值
a0 1.3 a6 0 b3 49.6
a1 ?22.1 a7 ?0.354 b4 226
a2 1011 a8 0.707 b5 0.069
a3 1078 b0 1.65 b6 ?0.069
a4 1.82 b1 ?21.5 b7 0.056
a5 0.208 b2 1144 b8 0.486
Tab.2 Coefficients of magic formula tire model
Fig.2 Wheel sideslip angle phase plane
Fig.3 Tire lateral force characteristics
Fig.4 Front and rear wheel lateral force characteristics combined phase plane
Fig.5 Stability region of front and rear wheel
Fig.6 Parameter meaning of coordinate function
Fig.7 Weight of direct yaw moment control in critical stability region
Fig.8 Vehicle steady state based on different phase planes
Fig.9 Coordinated control framework for  active front wheel steering and direct yaw moment control
Fig.10 Amount of change in front wheel angle under different sliding mode controllers
Fig.11 Observation results of front and rear wheel slip angle under super-twisting algorithm observer
Fig.12 Front wheel angle under hook steering condition
Fig.13 Vehicle track and vehicle state under different controllers
Fig.14 Weight of active front wheel steering and direct yaw moment control
Fig.15 Phase trajectory diagram of vehicle state under different control methods
Fig.16 Braking torque and additional steering wheel angle under coordinate control
[1]   李汉杰. 基于相平面分析的车辆操纵稳定性控制研究[D]. 合肥: 合肥工业大学, 2018: 40−68.
LI Han-jie. Research on handing stability control of vehicle based on phase plane analysis [D]. Hefei: Hefei University of Technology, 2018: 40−68.
[2]   WU J, CHENG S, LIU B, et al A human-machine-cooperative-driving controller based on AFS and DYC for vehicle dynamic stability[J]. Energies, 2017, 10 (11): 1737
doi: 10.3390/en10111737
[3]   田晨. 基于卡尔曼滤波的AFS和DYC协调控制[D]. 长沙: 湖南大学, 2017: 40-54.
TIAN Chen. Research on integrated control strategy of active front steering and direct yaw control based on the Kalman filter [D]. Changsha: Hunan University, 2017: 40-54.
[4]   杜松. 某轿车主动制动与主动转向相平面协调控制研究[D]. 长春: 吉林大学, 2015: 23-40.
DU Song. The research on phase plane vehicle coordination control of active front steering and active braking [D]. Changchun: Jilin University, 2015: 23-40
[5]   INAGAKI S, KUSHIRO I, YAMAMOTO M Analysis on vehicle stability in critical cornering using phase plane method[J]. JSAE Review, 1995, 16 (2): 287- 292
[6]   刘飞, 熊璐, 邓律华, 等 基于相平面法的车辆行驶稳定性判定方法[J]. 华南理工大学学报:自然科学版, 2014, 42 (11): 63- 70
LIU Fei, XIONG Lu, DENG Lu-hua, et al Vehicle stability criterion based on phase plane method[J]. Journal of South China University of Technology: Natural Science Edition, 2014, 42 (11): 63- 70
[7]   李静, 王子涵, 王宣锋 基于相平面法的制动方向稳定性分析[J]. 汽车工程, 2014, 36 (8): 974- 979
LI Jing, WANG Zi-han, WANG Xuan-feng An analysis on braking directional stability based on phase plane technique[J]. Automotive Engineering, 2014, 36 (8): 974- 979
doi: 10.19562/j.chinasae.qcgc.2014.08.014
[8]   HE J, CROLLA D A, LEVESLEY M C, et al Coordination of active steering, driveline, and braking for integrated vehicle dynamics control[J]. Journal of Automobile Engineering, 2006, 220 (10): 1401- 1421
doi: 10.1243/09544070JAUTO265
[9]   KOIBUCHI K, YAMAMOTO M, FUKADA Y, et al. Vehicle stability control in limit cornering by active brake [R]. [S.l.]: SAE International, 1996.
[10]   熊璐, 曲彤, 冯源, 等 极限工况下车辆行驶的稳定性判据[J]. 机械工程学报, 2015, 51 (10): 103- 111
XIONG Lu, QU Tong, FENG Yuan, et al Stability criterion for the vehicle under critical driving situation[J]. Journal of Mechanical Engineering, 2015, 51 (10): 103- 111
doi: 10.3901/JME.2015.10.103
[11]   PACEJKA H B. Tyre factors and vehicle handling [J] International Journal of Vehicle Design, 1979, 1(1): 1−23.
[12]   DI CAIRANO S, TSENG H E, BERNARDINIY D, et al Vehicle yaw stability control by coordinated active front steering and differential braking in the tire sideslip angles domain[J]. IEEE Transactions on Control Systems Technology, 2013, 21 (4): 1236- 1248
doi: 10.1109/TCST.2012.2198886
[13]   BERNARDINIY D, DI CAIRANOZ S, BEMPORAD A, et al. Drive-by-wire vehicle stabilization and yaw regulation: a hybrid model predictive control design [C]// Proceedings of the 48th IEEE Conference on Decision and Control. Shanghai: IEEE, 2009: 7621−7626.
[14]   MAMMAR S, KOENIG D Vehicle handling improvement by active steering[J]. Vehicle System Dynamics, 2002, 38 (3): 211- 242
doi: 10.1076/vesd.38.3.211.8288
[15]   PACEJKA H B. Tire and vehicle dynamics [M]. 3rd ed. [S.l.]: Butterworth-Heinemann, 2012.
[16]   WU X, ZHOU B, WEN G, et al Intervention criterion and control research for active front steering with consideration of road adhesion[J]. Vehicle System Dynamics, 2018, 56 (4): 553- 578
doi: 10.1080/00423114.2017.1395465
[17]   RAJAMANI R. Vehicle dynamics and control [M]. 2nd ed. [S. l.]: Springer, 2006: 201−235.
[18]   YOUNG K D, UTKIN V I, OZGUNER U A control engineer's guide to sliding mode control[J]. IEEE Transactions on Control Systems Technology, 1999, 7 (3): 328- 342
doi: 10.1109/87.761053
[19]   UTKIN V I Variable structure systems with sliding modes[J]. IEEE Transactions on Automatic Control, 1977, 22 (2): 212- 222
doi: 10.1109/TAC.1977.1101446
[20]   PAN S, SU H, HU X, et al. Variable structure control theory and application: a survey [C]// Proceedings of the 3rd World Congress on Intelligent Control and Automation. Hefei: IEEE, 2000: 2977−2981.
[21]   王曦, 王渝红, 李兴源, 等 考虑模型不确定性和时延的静止无功补偿器自适应滑模控制器设计[J]. 物理学报, 2014, 63 (23): 238407
WANG Xi, WANG Yu-hong, LI Xing-yuan, et al Design of the static var compensator adaptive sliding mode controller considering model uncertainty and time-delay[J]. Acta Physica Sinica, 2014, 63 (23): 238407
doi: 10.7498/aps.63.238407
[22]   张众正, 叶东, 孙兆伟 基于迭代学习观测器的卫星姿态滑模容错控制[J]. 国防科技大学学报, 2018, 40 (1): 17- 23
ZHANG Zhong-zheng, YE Dong, SUN Zhao-wei Sliding mode fault tolerant attitude control for satellite based on iterative learning observer[J]. Journal of National University of Defense Technology, 2018, 40 (1): 17- 23
doi: 10.11887/j.cn.201801003
[23]   MA Y, ZHAO J Y, ZHAO H Y, et al Longitudinal-vertical integrated sliding mode controller for distributed electric vehicles[J]. Science China Information Sciences, 2020, 63 (11): 219201
doi: 10.1007/s11432-018-9810-4
[24]   SLOTINE J J, SASTRY S S Tracking control of nonlinear systems using sliding surfaces with application to robot manipulator[J]. International Journal of Control, 1983, 38 (2): 465- 492
doi: 10.1080/00207178308933088
[25]   SLOTINE J J E Sliding controller design for non-linear systems[J]. International Journal of Control, 1984, 40 (2): 421- 434
doi: 10.1080/00207178408933284
[26]   GAO W B, HUNG J C, Variable structure control of nonlinear systems: a new approach [J]. IEEE Transactions on Industrial Electronics, 1993, 40(1): 45−55.
[27]   李鹏. 传统和高阶滑模控制研究及其应用[D]. 长沙: 国防科学技术大学, 2011: 3−19.
LI Peng. Research and application of traditional and higher-order sliding mode control [D]. Changsha: National University of Defense Technology, 2011: 3−19
[28]   LEVANT A Sliding order and sliding accuracy in sliding mode control[J]. International Journal of Control, 1993, 58 (6): 1247- 1263
doi: 10.1080/00207179308923053
[1] YU Xiao-yong, WEI Yan-ding, HUANG Mang-mang, ZHOU Xiao-jun, YANG Chen-long. Precise timing of HLA-based hardware-in-loop simulation for vehicles[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(7): 1195-1200.