Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (7): 1460-1469    DOI: 10.3785/j.issn.1008-973X.2023.07.021
    
Event-triggered load frequency control for power system based on dynamic quantization
San-bo DING1(),Kang ZHANG1,Fei-sheng YANG2,Jia-an ZHANG3
1. College of Artificial Intelligence and Data Science, Hebei University of Technology, Tianjin 300401, China
2. School of Automation, Northwestern Polytechnical University, Xi’an 710072, China
3. College of Electrical Engineering, Hebei University of Technology, Tianjin 300401, China
Download: HTML     PDF(1511KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The dynamic quantization technology was introduced into the network-controlled power system and the event-triggered load frequency control (LFC) method was applied to save the network resources aiming at the high proportion of new energy connected to the grid and the increasing communication load of secondary frequency modulation. The input-to-state stability of LFC system was realized by observer-based output feedback controller. An event-triggered mechanism with exponential decay term was designed for the feedback channel, and an event-triggered mechanism with state simulation term was designed for the forward channel according to the system state and dynamic quantization parameters. A dynamic model of event-triggered LFC system based on quantization communication was established. The condition of closed-loop system input-to-state stability was obtained under the bounded load disturbance. Zeno phenomenon was eliminated. The effectiveness of the proposed method was verified by simulation.



Key wordsnetwork-controlled system      load frequency control      event-triggered load      dynamic quantization      input-to-state stability     
Received: 23 July 2022      Published: 17 July 2023
CLC:  TP 13  
Fund:  国家自然科学基金资助项目(61903121,62073269);河北省自然科学基金资助项目(F2020202063);河北省创新能力提升计划资助项目(18961604H);航空科学基金资助项目(2020Z0340-53002);陕西省重点研发计划资助项目(2022GY-244)
Cite this article:

San-bo DING,Kang ZHANG,Fei-sheng YANG,Jia-an ZHANG. Event-triggered load frequency control for power system based on dynamic quantization. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1460-1469.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.07.021     OR     https://www.zjujournals.com/eng/Y2023/V57/I7/1460


基于动态量化的电力系统事件触发负荷频率控制

针对新能源高比例并网以及由此产生的二次调频通信负荷增加问题,为了节约网络资源,将动态量化技术引入网络控制的电力系统中,应用事件触发负荷频率控制(LFC)方法,通过基于观测器的输出反馈控制器,实现了LFC系统输入到状态稳定. 根据系统状态和动态量化参数,在反馈通道中设计加入指数衰减项的事件触发机制,在前向通道中设计加入状态模拟项的事件触发机制. 建立基于量化控制的事件触发LFC系统动态模型,在有界负荷扰动下得到闭环系统输入到状态稳定的条件,排除了Zeno现象. 通过仿真实验验证了提出方法的有效性.


关键词: 网络控制系统,  负荷频率控制,  事件触发负荷,  动态量化,  输入到状态稳定 
Fig.1 Dynamic model of one-area load frequency control system
Fig.2 Dynamic model of load frequency control system based on quantization control
参数 参数值 参数 参数值
M/Hz?1 10 Tg/s 0.1
D/Hz?1 1 R/Hz 0.05
Tch/s 0.3 $\;\beta$/Hz?1 21
Tab.1 Parameters of load frequency control system
Fig.3 Response curve of system frequency deviation
Fig.4 Response curve of system state
Fig.5 Response curve of observer state
Fig.6 Response curve of state estimation error
Fig.7 Response curve of output signal and output quantizer
Fig.8 Response curve of input signal and input quantizer
Fig.9 Response curve of zooming variables
Fig.10 Response curve of system frequency deviation[22]
Fig.11 Event triggering intervals based on proposed method
Fig.12 Event triggering intervals[22]
[1]   ZHANG C K, JIANG L, WU Q H, et al Delay-dependent robust load frequency control for time delay power systems[J]. IEEE Transactions on Power Systems, 2013, 28 (3): 2192- 2201
doi: 10.1109/TPWRS.2012.2228281
[2]   XIAHOU K S, LIU Y, WU Q H Robust load frequency control of power systems against random time-delay attacks[J]. IEEE Transactions on Smart Grid, 2021, 12 (1): 909- 911
doi: 10.1109/TSG.2020.3018635
[3]   SHANGGUAN X C, HE Y, ZHANG C K, et al Control performance standards-oriented event-triggered load frequency control for power systems under limited communication bandwidth[J]. IEEE Transactions on Control Systems Technology, 2022, 30 (2): 860- 868
doi: 10.1109/TCST.2021.3070861
[4]   SHANGGUAN X C, ZHANG C K, HE Y, et al Robust load frequency control for power system considering transmission delay and sampling period[J]. IEEE Transactions on Industrial Informatics, 2021, 17 (8): 5292- 5303
doi: 10.1109/TII.2020.3026336
[5]   李军, 李韬 基于贝叶斯序贯博弈模型的智能电网信息物理安全分析[J]. 自动化学报, 2019, 45 (1): 98- 109
LI Jun, LI Tao Cyber-physical security analysis of smart grids with Bayesian sequential game models[J]. Acta Automatica Sinica, 2019, 45 (1): 98- 109
doi: 10.16383/j.aas.2018.c180336
[6]   王中杰, 谢璐璐 信息物理融合系统研究综述[J]. 自动化学报, 2011, 37 (10): 1157- 1166
WANG Zhong-jie, XIE Lu-lu Cyber-physical systems: a survey[J]. Acta Automatica Sinica, 2011, 37 (10): 1157- 1166
[7]   杨飞生, 汪璟, 潘泉 基于事件触发机制的网络控制研究综述[J]. 控制与决策, 2018, 33 (6): 969- 977
YANG Fei-sheng, WANG Jing, PAN Quan A survey of networked event-triggered control[J]. Control and Decision, 2018, 33 (6): 969- 977
doi: 10.13195/j.kzyjc.2017.0531
[8]   XIE X P, WEI C, GU Z, et al Relaxed resilient fuzzy stabilization of discrete-time Takagi-Sugeno systems via a higher order time-variant balanced matrix method[J]. IEEE Transactions on Fuzzy Systems, 2022, 30 (11): 5044- 5050
doi: 10.1109/TFUZZ.2022.3145809
[9]   ZHANG P P, LIU T F, JIANG Z P Event-triggered stabilization of a class of nonlinear time-delay systems[J]. IEEE Transactions on Automatic Control, 2021, 66 (1): 421- 428
doi: 10.1109/TAC.2020.2979828
[10]   ZHANG H, LIU J, XU S Y Practical stability and event- triggered load frequency control of networked power systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52 (10): 6296- 6304
doi: 10.1109/TSMC.2022.3143853
[11]   CHEN P C, ZHANG D, YU L, et al Dynamic event-triggered output feedback control for load frequency control in power systems with multiple cyber attacks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52 (10): 6246- 6258
doi: 10.1109/TSMC.2022.3143903
[12]   WEN S P, YU X H, ZENG Z G, et al Event-triggering load frequency control for multi-area power systems with communication delays[J]. IEEE Transactions on Industrial Electronics, 2016, 63 (2): 1308- 1317
doi: 10.1109/TIE.2015.2399394
[13]   LIU G P, PARK J H, HUA C C, et al Hybrid dynamic event-triggered load frequency control for power systems with unreliable transmission networks[J]. IEEE Transactions on Cybernetics, 2023, 53 (2): 806- 817
doi: 10.1109/TCYB.2022.3163271
[14]   WU C Y, ZHAO X D, WANG B H, et al Model-based dynamic event-triggered control for cyber-physical systems subject to dynamic quantization and DoS attacks[J]. IEEE Transactions on Network Science and Engineering, 2022, 9 (4): 2406- 2417
doi: 10.1109/TNSE.2022.3163783
[15]   PENG C, LI J C, FEI M R Resilient event-triggering H load frequency control for multi-area power systems with energy limited DoS attacks [J]. IEEE Transactions on Power Systems, 2017, 32 (5): 4110- 4118
doi: 10.1109/TPWRS.2016.2634122
[16]   杨飞生, 汪璟, 潘泉, 等 网络攻击下信息物理融合电力系统的弹性事件触发控制[J]. 自动化学报, 2019, 45 (1): 110- 119
YANG Fei-sheng, WANG Jing, PAN Quan, et al Resilient event-triggered control of grid cyber-physical systems against cyber attack[J]. Acta Automatica Sinica, 2019, 45 (1): 110- 119
doi: 10.16383/j.aas.c180388
[17]   YUE D, TIAN E G, HAN Q L A delay system method for designing event-triggered controllers of networked control systems[J]. IEEE Transactions on Automatic Control, 2013, 58 (2): 475- 481
doi: 10.1109/TAC.2012.2206694
[18]   PENG C, ZHANG J, YAN H C Adaptive event-triggering H∞ load frequency control for network-based power systems [J]. IEEE Transactions on Industrial Electronics, 2018, 65 (2): 1685- 1694
doi: 10.1109/TIE.2017.2726965
[19]   SELIVANOV A, FRADKOV A, LIBERZON D Adaptive control of passifiable linear systems with quantized measurements and bounded disturbances[J]. Systems and Control Letters, 2016, 88: 62- 67
doi: 10.1016/j.sysconle.2015.12.001
[20]   LIBERZON D Hybrid feedback stabilization of systems with quantized signals[J]. Automatica, 2003, 39 (9): 1543- 1554
doi: 10.1016/S0005-1098(03)00151-1
[21]   LIU K, FRIDMAN E, JOHANSSON K H Dynamic quantization of uncertain linear networked control systems[J]. Automatica, 2015, 59: 248- 255
doi: 10.1016/j.automatica.2015.06.041
[22]   ZHOU T W, ZUO Z Q, WANG Y J Self-triggered and event-triggered control for linear systems with quantization[J]. IEEE Transactions on Systems, Man, and Cybernetics Systems, 2020, 50 (9): 3136- 3144
doi: 10.1109/TSMC.2018.2833114
[23]   TANWANI A, PRIEUR C, FIACCHINI M Observer-based feedback stabilization of linear systems with event-triggered sampling and dynamic quantization[J]. Systems and Control Letters, 2016, 94: 46- 56
doi: 10.1016/j.sysconle.2016.05.008
[1] Jie LIU,Xian-zhou DONG,Wei HAN,Xin-wei WANG,Chun LIU,Jun JIA. Trajectory planning for carrier aircraft on deck using Newton Symplectic pseudo-spectral method[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1827-1838.
[2] TAO Guo-liang, ZHOU Chao-chao, SHANG Ce. Pneumatic position servo embedded controller and control strategy[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 792-799.
[3] ZHU Shao peng, LIN Ding, XIE Bo zhen, YU Xiao li, HAN Song. Driving force hierarchical control strategy of electric vehicle[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(11): 2094-2099.
[4] LI Qi-an, GUO Qiang. Soft measurement for calorific value of cracking fuel gas based on Online SVM algorithm[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(3): 457-463.
[5] LI Li-juan, XIONG Lu, LIU Jun, XU Ou-guan. Multi-model predictive control based on AP-LSSVM[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(10): 1741-1746.
[6] LOU Ke, QI Bin, MU Wen-ying, CUI Bao-tong. Flocking control of multiple agents based on feedback control strategy[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(10): 1758-1763.
[7] YAN Bo, JIANG Dao-zhuo, GAN De-qiang, ZANG Yu-qing. An UPFC nonlinear robust controller based on feedback
linearization H∞ method
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(11): 1975-1980.
[8] MAO Wei-jie, ZHANG Yuan-yuan. Stability analysis for neutral systems with interval time-varying delays[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(5): 848-852.
[9] CUI Li-li, ZHANG Hua-guang, LUO Yan-hong. Adaptive critic design of nonlinear system with unknown control direction[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(5): 853-857.
[10] WANG Li-juan, ZHANG Hui. On parameter identifiability of linear multivariable systems under
communication access constraints
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(12): 2103-2108.
[11] NI He, XIAO Hang, CHENG Gang, SUN Feng-rui. Optimization of load controller for steam power plant using
evolutionary algorithm and chaos
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(12): 2202-2207.
[12] ZHAO Li-li, LI Ping, LI Xiu-liang. Design of adaptive observer with forgetting factor for linear system[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(10): 1704-1709.
[13] BO Hai-Feng, LV Yong-Song. Fuzzy neural network control method with compensation
for time-delay system
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(7): 1343-1347.
[14] MA Yu-Liang, XU Wen-Liang, MENG Meng, LUO Zhi-Ceng, YANG Jia-Jiang. Adaptive control for intelligent lower limb prosthesis based on
neural network
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(7): 1373-1376.
[15] WANG Dun-Hong, XUE An-Ke. Output feedback control for timedelay system with
quantized measurement
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(7): 1418-1422.