Please wait a minute...
J4  2011, Vol. 45 Issue (10): 1704-1709    DOI: 10.3785/j.issn.1008-973X.2011.10.002
    
Design of adaptive observer with forgetting factor for linear system
ZHAO Li-li1, LI Ping1, LI Xiu-liang2
1. State Key Laboratory of Industrial Control Technology, Institute of Industrial Process Control, Zhejiang University,
Hangzhou 310027, China; 2. State Key Laboratory of Industrial Control Technology, Institute of CyberSystems and
Control, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An adaptive observer with exponential forgetting factor was designed constructively for continuous-time multiple-input multiple-output linear time-varying systems with unknown parameters in both state and output equations. The global exponential convergence of the adaptive observer was established for the noise-free case. For the noise-corrupted case, the estimation errors converged in the mean to zero exponentially fast under appropriate assumptions. The adaptive observer used a time-varying gain matrix with exponential forgetting factor in order to overcome noises and improve the consistency of estimation. A numerical example was presented to illustrate the performance of the adaptive observer.



Published: 01 October 2011
CLC:  TP 13  
Cite this article:

ZHAO Li-li, LI Ping, LI Xiu-liang. Design of adaptive observer with forgetting factor for linear system. J4, 2011, 45(10): 1704-1709.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2011.10.002     OR     https://www.zjujournals.com/eng/Y2011/V45/I10/1704


带遗忘因子的线性系统自适应观测器设计

针对状态方程和输出方程同时含有未知参数的多输入-多输出连续线性时变系统,采用构造性方法设计一种带指数遗忘因子的自适应观测器.证明当系统无噪声时该自适应观测器的全局指数收敛性,在此基础上考虑有噪声系统,在若干假设成立的条件下证明了该自适应观测器的估计误差均值也是全局指数收敛于0的.该自适应观测器采用带指数遗忘因子的时变增益矩阵,以自适应的方式克服噪声的影响,改善了估计的一致性.数值仿真结果表明,该自适应观测器具有良好的快速收敛性、跟踪性及抗干扰性等期望性能.

[1] 鲁仁全,魏强,薛安克. 基于线性量化的网络控制系统状态观测器设计[J]. 浙江大学学报:工学版,2010,44(7): 1400-1405.
LU Renquan, WEI Qiang, XUE Anke. State estimation of network control system based on linear quantization [J]. Journal of Zhejiang University: Engineering Science, 2010, 44(7): 1400-1405.
[2] 方强,马杰,毕运波,等.基于扰动观测器的电动负载模拟器控制系统设计[J].浙江大学学报:工学版,2009,43(11): 1958-1964.
FANG Qiang, MA Jie, BI Yunbo, et al. Disturbance observer based controller design for electric dynamic load simulator [J]. Journal of Zhejiang University: Engineering Science, 2009, 43(11): 1958-1964.
[3] BESANCON G. Remarks on nonlinear adaptive observer design [J]. Systems and Control Letters, 2000, 41(4): 271-280.
[4] ZHANG Q. Adaptive observer for multipleinputmultipleoutput (MIMO) linear time varying systems [J]. IEEE Transactions on Automatic Control, 2002, 47(3): 525-529.
[5] ZHANG Q, CLAVEL A. Adaptive observer with exponential forgetting factor for linear time varying systems [C]∥ IEEE Conference on Decision and Control (CDC’2001). Orlando: IEEE, 2001: 3886-3891.

[6] PERABO S, ZHANG Q. Adaptive observers for linear stochastic timevariant systems with disturbances [J]. International Journal of Adaptive Control and Signal Processing, 2009, 23(6): 547-566.
[7] XU A, ZHANG Q. Nonlinear system fault diagnosis based on adaptive estimation [J]. Automatica, 2004, 40(7): 1181-1193.
[8] FARZA M, M’SAAD M, MAATOUG T, et al. Adaptive observers for nonlinearly parameterized class of nonlinear systems [J]. Automatica, 2009, 45(10): 2292-2299.
[9] ZHANG Q. An adaptive observer for sensor fault estimation in linear time varying systems [C]∥ Proceedings of the 16th IFAC World Congress. Prague: [s. n.], 2005.
[10] ZHANG Q, BESANCON G. An adaptive observer for sensor fault estimation in a class of uniformly observable nonlinear systems [J]. International Journal of Modelling, Identification and Control, 2008, 4(1): 37-43.
[11] SIMON D. Optimal state estimation: Kalman, HInfinity, and nonlinear approaches [M]. New Jersey: Wiley, 2006: 235-236.
[12] CHEN J, PATTON J P. Robust modelbased fault diagnosis for dynamic systems [M]. Boston, Dordrecht, London: Kluwer Academic Publishers, 1999: 210-213.

[1] LI Li-juan, XIONG Lu, LIU Jun, XU Ou-guan. Multi-model predictive control based on AP-LSSVM[J]. J4, 2013, 47(10): 1741-1746.
[2] LOU Ke, QI Bin, MU Wen-ying, CUI Bao-tong. Flocking control of multiple agents based on feedback control strategy[J]. J4, 2013, 47(10): 1758-1763.
[3] MAO Wei-jie, ZHANG Yuan-yuan. Stability analysis for neutral systems with interval time-varying delays[J]. J4, 2012, 46(5): 848-852.
[4] WANG Li-juan, ZHANG Hui. On parameter identifiability of linear multivariable systems under
communication access constraints
[J]. J4, 2011, 45(12): 2103-2108.
[5] NI He, XIAO Hang, CHENG Gang, SUN Feng-rui. Optimization of load controller for steam power plant using
evolutionary algorithm and chaos
[J]. J4, 2011, 45(12): 2202-2207.
[6] BO Hai-Feng, LV Yong-Song. Fuzzy neural network control method with compensation
for time-delay system
[J]. J4, 2010, 44(7): 1343-1347.
[7] WANG Dun-Hong, XUE An-Ke. Output feedback control for timedelay system with
quantized measurement
[J]. J4, 2010, 44(7): 1418-1422.
[8] JU Hong-Bei, FANG Shan-Hua, LU Ren-Quan, XUE An-Ke. Design of quantized state estimator for dualstage control system[J]. J4, 2010, 44(7): 1428-1432.
[9] XIE Bin, ZHANG Kai-Dan, BO Hua-Dong, et al. Hospitability map building and ground target tracking with UAV under unknown environments[J]. J4, 2010, 44(1): 118-123.