Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (1): 200-208    DOI: 10.3785/j.issn.1008-973X.2023.01.020
    
Water flow field evolution characteristics of oblique water-exit process for different shapes underwater launched vehicles
Qi-bin ZHUANG(),Huan-bin ZHANG,Zhi-rong LIU,Rui ZHU*()
School of Aerospace Engineering, Xiamen University, Xiamen 361005, China
Download: HTML     PDF(1786KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The impact of the head shape, launch angle and launch velocity on the evolution of the trans-phase load and flow field characteristics of a submersible launch vehicle was analyzed. Statistical correlation analysis was used to combine the hydrodynamic and flow-field evolution properties of the vehicle based on data from water-to-air tests and numerical simulations of a submersible launch vehicle in order to reveal the effect of each experimental factor on the water flow characteristics of the trans-phase vehicle and its mechanisms. Results show that the factors affecting the degree of trans-phase stability of the vehicle are: head shape > launch angle > launch velocity. The factors that affect the trans-phase load and flow field evolution stability of the submersible launch vehicle were as follows. 1) The intensity and frequency of flow field shedding vortex caused by the difference of head shape affected the turbulent kinetic energy dissipation (maximum dissipation was 0.075 J). 2) Different launch angles caused changes in vehicle motion state and component force. 3) Different initial kinetic energy caused by different launch velocities induced different trans-phase kinetic energy dissipation.



Key wordssubmersible launch vehicle      trans-phase      stability      turbulence kinetic energy      head shape     
Received: 24 June 2022      Published: 17 January 2023
CLC:  V 217  
Fund:  “十三· 五” 装备预研领域基金资助项目(61402060405);福建省自然科学基金资助项目(2022J01058)
Corresponding Authors: Rui ZHU     E-mail: 13290989198@163.com;zhurui@xmu.edu.cn
Cite this article:

Qi-bin ZHUANG,Huan-bin ZHANG,Zhi-rong LIU,Rui ZHU. Water flow field evolution characteristics of oblique water-exit process for different shapes underwater launched vehicles. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 200-208.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.01.020     OR     https://www.zjujournals.com/eng/Y2023/V57/I1/200


不同构型潜射航行器倾斜出水流场演化特性

研究头部构型、发射角度、发射速度对潜射航行器跨介质出水载荷及水流场演化特性的影响. 基于潜射航行器跨介质出水弹射试验及数值仿真数据,采用统计学相关分析与跨介质水动力、水流场演变特性相结合的方式,揭示各试验影响因素对航行器跨介质水流场特性的影响及机理. 研究结果表明,各因素影响航行器跨介质稳定性的程度关系为:头部构型 > 发射角度 > 发射速度. 影响潜射航行器跨介质出水载荷及水流场演化稳定特性的因素如下:1)头部构型差异引起流场脱落涡强度与脱落涡频率的不同,影响了湍动能耗散(最大耗散为0.075 J);2)发射角度不同引起了航行器运动状态与分力的改变;3)发射速度不同引起的初始动能不同诱发跨介质动能耗散不一.


关键词: 潜射航行器,  跨介质,  稳定性,  湍动能,  头部构型 
Fig.1 Underwater launched vehicles trans-phase test
材质 d/mm L/mm Vs/cm3 ρ/ (kg·m?3) m/g
304不锈钢 6 30 8.48×10?1 8×103 68
Tab.1 Parameters of vehicle model
Fig.2 Underwater launched vehicles trans-phase transient images (70° launch angle)
VL/(m·s?1) θL/(°) 头部构型 Δθ/(°)
3.0 70 1 3.72
3.0 80 1 3.09
4.0 70 1 3.04
4.0 80 1 2.67
5.0 70 1 2.58
5.0 80 1 2.11
3.0 70 2 3.21
3.0 80 2 2.63
4.0 70 3 2.64
4.0 80 3 2.20
5.0 70 4 1.40
5.0 80 4 0.70
Tab.2 Test data of vehicle trans-phase deflection angel variation
Fig.3 Computational domain and mesh division
Fig.4 Verification on experimental/numerical trajectory
Fig.5 Linear correlation analysis
Fig.6 Partial correlation analysis
Fig.7 Vehicle load evolution
Fig.8 Trans-phase pressure nephograms
Fig.9 Evolution of vehicle surface pressure coefficient
Fig.10 Distribution of trans-phase transient pressure
Fig.11 Velocity circulation and turbulent kinetic energy
Fig.12 Evolution of wall shear force and turbulent kinetic energy
Fig.13 Kinetic energy evolution of vehicle
[1]   BRETON T, TASSIN A, JACQUES N Experimental investigation of the water entry and/or exit of axisymmetric bodies[J]. Journal of Fluid Mechanics, 2020, 901: 37
doi: 10.1017/jfm.2020.559
[2]   DAYTON J W, POETTGEN B K, CETEGEN B M Non-isothermal mixing characteristics in the extreme near-field of turbulent jets in hot crossflow: effects of jet exit turbulence and velocity profile[J]. Physics of Fluids, 2020, 32 (11): 115114
[3]   KRISTENSEN H M, NORRIS R S Chinese nuclear forces, 2015[J]. Bulletin of the Atomic Scientists, 2015, 71 (4): 77- 84
doi: 10.1177/0096340215591247
[4]   MA Z, HU J, FENG J, et al. A longitudinal air–water trans-media dynamic model for slender vehicles under low-speed condition. Nonlinear Dynamics, 2020, 99(2): 1195-1210.
[5]   NAIR V V, BHATTACHARYYA S K Water entry and exit of axisymmetric bodies by CFD approach[J]. Journal of Ocean Engineering and Science, 2018, 3 (2): 156- 174
doi: 10.1016/j.joes.2018.05.002
[6]   KIM N, PARK H Water entry of rounded cylindrical bodies with different aspect ratios and surface conditions[J]. Journal of Fluid Mechanics, 2019, 863: 757- 788
doi: 10.1017/jfm.2018.1026
[7]   HAO H H, SONG Y P, YU J Y, et al Numerical analysis of water exit for a sphere with constant velocity using the lattice Boltzmann method[J]. Applied Ocean Research, 2019, 84 (12): 163- 178
[8]   GUO C, LIU T, HAO H, et al Evolution of water column pulled by partially submerged spheres with different velocities and submergence depths[J]. Ocean Engineering, 2019, 187 (5): 106087
[9]   孙士丽, 孙义龙, 胡竞中, 等 圆柱体出水运动的自由面效应及水冢现象分析[J]. 计算物理, 2013, 30 (2): 187- 193
SUN Shi-li, SUN Yi-long, HU Jing-zhong, et al Free surface effect and spike of a cylinder piercing water surface[J]. Chinese Journal of Computational Physics, 2013, 30 (2): 187- 193
doi: 10.3969/j.issn.1001-246X.2013.02.004
[10]   魏海鹏, 符松 不同多相流模型在航行体出水流场数值模拟中的应用[J]. 振动与冲击, 2015, 34 (4): 48- 52
WEI Hai-peng, FU Song Multiphase models for flow field numerical simulation of a vehicle rising from water[J]. Journal of Vibration and Shock, 2015, 34 (4): 48- 52
doi: 10.13465/j.cnki.jvs.2015.04.009
[11]   赵蛟龙 细长体倾斜出水的实验研究[J]. 爆炸与冲击, 2016, 36 (1): 113- 119
ZHAO Jiao-long Experimental study on oblique water-exit of slender bodies[J]. Explosion and Shock Waves, 2016, 36 (1): 113- 119
doi: 10.11883/1001-1455(2016)01-0113-08
[12]   赵蛟龙. 航行体出入水空泡载荷特性及缩比试验研究[D]. 哈尔滨: 哈尔滨工程大学, 2016: 45-50.
ZHAO Jiao-long. Fluid dynamics and experimental investigation on the cavitation characteristics of the water-exit and -entry process of underwater vehicle [D]. Harbin: Harbin Engineering University, 2016: 45-50.
[13]   廖保全 附加质量变化率在航行体出水过程中的影响研究[J]. 计算力学学报, 2017, 34 (1): 95- 100
LIAO Bao-quan Influence on rate of change of added mass for an underwater vehicle during its water exit process[J]. Chinese Journal of Computational Mechanics, 2017, 34 (1): 95- 100
doi: 10.7511/jslx201701013
[14]   张晓强, 冯金富, 吝科, 等 跨介质运动物体的附加质量[J]. 北京航空航天大学学报, 2016, 42 (4): 821- 828
ZHANG Xiao-qiang, FENG Jin-fu, LIN-Ke, et al Added mass of trans-media moving object[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42 (4): 821- 828
doi: 10.13700/j.bh.1001-5965.2015.0478
[15]   陈林烽 基于 Navier-Stokes 方程残差的隐式大涡模拟有限元模型[J]. 力学学报, 2020, 52 (5): 1314- 1322
CHEN Lin-feng A residual based unresolved-scale finite element modelling for implicit large eddy simulation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52 (5): 1314- 1322
doi: 10.6052/0459-1879-20-055
[16]   吴霆, 时北极, 王士召, 等 大涡模拟的壁模型及其应用[J]. 力学学报, 2018, 50 (3): 453- 466
WU Ting, SHI Bei-ji, WANG Shi-zhao, et al Wall model for large-eddy simulation and its applications[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50 (3): 453- 466
doi: 10.6052/0459-1879-18-071
[17]   王建丽, 张渭育. 统计学[M]. 北京: 清华大学出版社, 2010: 215-220.
[18]   李晓斌, 郭小威, 袁刚 基于逻辑靶场技术的导弹内外场联合试验训练系统[J]. 兵工自动化, 2019, 38 (6): 9- 13
LI Xiao-bin, GUO Xiao-wei, YUAN Gang Infield and airfield joint testing and training system of missile based on logical range technology[J]. Ordnance Industry Automation, 2019, 38 (6): 9- 13
doi: 10.7690/bgzdh.2019.06.002
[19]   施红辉. 流体力学入门[M]. 杭州: 浙江大学出版社, 2013: 108-109.
[20]   刘志荣, 邹赫, 刘锦生, 等 开缝圆柱缝隙倾斜角对脱落涡的影响[J]. 北京航空航天大学学报, 2017, 43 (1): 8
LIU Zhi-rong, ZOU He, LIU Jin-sheng, et al Effect of angle of slit on shedding vortex of slotted circular cylinder[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43 (1): 8
doi: 10.13700/j.bh.1001-5965.2016.0058
[21]   郑益华. 基于翠鸟界面润湿控制行为的跨介质航行器表面防浸润研究[D]. 吉林: 吉林大学, 2020: 129-130.
ZHENG Yi-hua. Research on the anti-wetting of aquatic UAV surface based on the wetting control behavior of kingfisher interface [D]. Jilin: Jilin University, 2020: 129-130.
[1] Ao ZHOU,Bin WANG,Jie-tao LI,Xin ZHOU,Wen-jun XIA. Long-term stability analysis and deformation prediction of soft soil foundation pit in Taihu Tunnel[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 692-701.
[2] En-yu WU,Guo-dong QIAN,Bin LI. Water adsorption in aluminum-based metal-organic framework for atmospheric water harvesting[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 186-192.
[3] Jia-jia WANG,Ying-feng CAI,Long CHEN,Shao-hua WANG,De-hua SHI. Coordinated control of hybrid electric vehicle based on extended state observer estimation[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1225-1233.
[4] Jia-yi SHEN,Meng KU,Li-zhong WANG. Stability analyses of submarine slopes based on shear band propagation method[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1299-1307.
[5] Xi LI,Jian HU,Jian-yong YAO,Ke-peng WEI,Peng-fei WANG,Hao-chen XING. High precision control of electromechanical system based on observer friction compensation[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1150-1158.
[6] Cheng-fei TAO,Hao ZHOU,Liu-bin HU,Zi-hua LIU,Ke-fa CEN. Dynamic characteristics of thermoacoustic instability of liquid spray combustion[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2108-2114.
[7] Yu-qiong WANG,Song GAO,Yu-hai WANG,Yi XU,Dong GUO,Ying-chao ZHOU. Trajectory tracking and stability control of high-speed autonomous vehicle[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1922-1929.
[8] Wu-ming LENG,Qi-shu ZHANG,Fang XU,Hui-kang LENG,Ru-song NIE,Xiu-hang YANG. Additional confining pressure field and enhancement effect of prestressed embankment[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 858-869.
[9] Hui-fang WANG,Chen-yu ZHANG. Prediction of voltage stability margin in power system based on extreme gradient boosting algorithm[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 606-613.
[10] Chi QIU,Jian-kun HUANG,Yu-cun HU,Xiao-ping GUO,Yun-qing HU. Influence of irrigation on slope stability of dump in arid desert area of Northwest China: a case study of Xinxing coal mine, Wuhai[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1467-1477.
[11] Yue-han XIE,Chao-sheng TANG,Bo LIU,Qing CHENG,Li-yang YIN,Ning-jun JIANG,Bin SHI. Water stability improvement of clayey soil based on microbial induced calcite precipitation[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1438-1447.
[12] Liang LV,Hong CHEN,Xun GONG,Hai-guang ZHAO,Yun-feng HU. Cooling system modeling and coolant temperature control for gasoline engine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1119-1129.
[13] Guo-jun WANG,Hong-guo XU,Hong-fei LIU. Handling stability analysis of B-double[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 299-306.
[14] Hai-hui YUAN,Yi-min GE,Chun-biao GAN. Adaptive robust control of dynamic walking of bipedal robots under uncertain disturbances[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2049-2057.
[15] Chao-ying XIA,Gang WU,Jia-li YU. Design of modular multilevel converter control system based on uniformly asymptotically stable observer[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2238-2247.