Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (2): 299-306    DOI: 10.3785/j.issn.1008-973X.2019.02.013
Civil Engineering, Traffic Engineering     
Handling stability analysis of B-double
Guo-jun WANG(),Hong-guo XU,Hong-fei LIU*()
College of Transportation, Jilin University, Changchun 130022, China
Download: HTML     PDF(1141KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The effect of vehicle parameter variation on B-double handling stability was analyzed. A new analytical method was proposed, and a single-track linear model with three centers of mass and four degrees of freedom for B-double was developed. The dynamic state equations were solved using Matlab software with the tractor’s steering wheel angle step input, and the expressions of steady state yaw rate gain and understeer gradient of three vehicle units, and the expressions of steady state relative gain between three vehicle units were deduced. The effects of vehicle structural parameters such as load capacity and location of fifth wheel on understeer gradients of three vehicle units were analyzed. The effects of understeer gradient, location of center of mass and location of fifth wheel on three steady state relative gains were analyzed. Results showed that as the load increased, the location of two fifth wheels should be adjusted properly to keep three vehicle units in the understeering state, which can keep the driving state well for combination vehicles. Results provides theoretical basis for the design of B-double structural parameters and the improvement of the handling stability.



Key wordsvehicle engineering      B-double      handling stability      steady yaw rate gain      understeer gradient     
Received: 05 April 2018      Published: 21 February 2019
CLC:  U 469  
Corresponding Authors: Hong-fei LIU     E-mail: wangguoyl@qq.com;hongfeiliu@jlu.edu.cn
Cite this article:

Guo-jun WANG,Hong-guo XU,Hong-fei LIU. Handling stability analysis of B-double. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 299-306.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.02.013     OR     http://www.zjujournals.com/eng/Y2019/V53/I2/299


双半挂汽车列车操纵稳定性分析

分析车辆参数变化对双半挂汽车列车操纵稳定性的影响. 提出新的建模分析方法,建立双半挂汽车列车三质心四自由度线性单轨模型. 在牵引车前轮角阶跃输入下,运用Matlab软件求解动力学状态方程,得到稳态响应评价中3个车辆单元的稳态横摆角速度增益表达式和不足转向梯度表达式,以及3个车辆单元两两之间的稳态相对增益表达式. 分析载荷量和鞍座位置等车辆结构参数对3个车辆单元不足转向梯度的影响,分析不足转向梯度、质心位置和鞍座位置变化对3个稳态相对增益表达式的影响. 结果表明,当载荷增加时,须恰当调整2个鞍座的位置,确保3个车辆单元处于不足转向的状态,使汽车列车行驶状态良好. 研究结果为双半挂汽车列车的结构参数设计和操纵稳定性改善提供了理论基础.


关键词: 车辆工程,  双半挂汽车列车,  操纵稳定性,  稳态横摆角速度增益,  不足转向梯度 
Fig.1 Side view of B-double
Fig.2 Model diagram for B-double
Fig.3 Diagram for lateral acceleration solution for three vehicle units
符号 数值 单位
mm1m2 8 439,7 500,7 540 kg
IzIz1Iz2 18 100,107 400,107 800 kg·m2
aa1a2 1.8,5.1,5.1 m
bb1b2 2.1,2.9,2.9 m
cc1 1.9,2.6 m
LL1L2 3.9,8.0,8.0 m
δ 0.06 rad
kfkr 90 666×2,64 546×8 N/rad
k1k2 45 358×12,45 358×12 N/rad
Tab.1 Structural parameters for B-double
Fig.4 Steady state yaw rate gain curve for B-double
Fig.5 Variation curve of understeer gradient with location of fifth wheel
Fig.6 Steady state relative gain curve for B-double
Fig.7 Curve of steady state relative gain between tractor and first semitrailer
Fig.9 Curve of steady state relative gain between tractor and second semitrailer
Fig.8 Curve of steady state relative gain between two semitrailers
[1]   李佳 双半挂模块化汽车列车亮相物博会[J]. 商用汽车新闻, 2013, (38): 4
LI Jia B-double modular vehicle combinations shown on logistics expo[J]. Commercial Vehicle News, 2013, (38): 4
[2]   应朝阳 国家标准《汽车、挂车及汽车列车外廓尺寸、轴荷及质量限值》(GB 1589?2016)制修订情况介绍[J]. 汽车与安全, 2016, (8): 90- 94
YING Chao-yang The introduction of national standard limits of dimensions, axle load and masses for motor vehicles, trailers and combination vehicles revised edition (GB 1589?2016)[J]. Auto and Safety, 2016, (8): 90- 94
[3]   FANCHER P S. Simulation of the directional response characteristics of tractor-semitrailer vehicles [R/OL]. (1979-03-01) [2018-03-01]. http:// deepblue.lib.umich.edu/handle/2027.42/569.
[4]   FANCHER P S The static stability of articulated commercial vehicles[J]. Vehicle System Dynamics, 1985, 14 (4?6): 201- 227
[5]   XIE L. Simulation of tractor-trailer system stability [D]. Ames: Iowa State University, 1984.
[6]   CHEN C, TOMIZUKA M. Dynamic modeling of tractor-semitrailer vehicles in automated highway systems [R/OL]. (1995-07-01) [2018-03-01]. https:// escholarship. org/uc/item/4cdcx08c.
[7]   PAUWELUSSEN J P. Excessive yaw behaviour of commercial vehicles, a fundamental approach [C]// 17th International Technical Conference on the Enhanced Safety of Vehicles. Amsterdam: Netherlands, 2001.
[8]   SALAANI M K The application of understeer gradient in stability analysis of articulated vehicles[J]. International Journal of Heavy Vehicle Systems, 2009, 16 (1/2): 3- 25
[9]   DAHLBERG E, WIDEBERG J. Influence of the fifth-wheel location on heavy articulated vehicle handling [C]// 8th International Symposium on Heavy Vehicle Weights and Dimensions. Johannesburg: [s.n.], 2004.
[10]   刘宏飞. 半挂汽车列车横摆动力学仿真及控制策略研究[D]. 长春: 吉林大学, 2005.
LIU Hong-fei. Study on the simulation and control strategy for yaw motion dynamics of tractor-semitrailer [D]. Changchun: Jilin University, 2005.
[11]   关志伟, 刘宏飞 半挂汽车列车稳态转向特性判别方法研究[J]. 天津职业技术师范大学学报, 2006, 16 (1): 1- 3
GUAN Zhi-wei, LIU Hong-fei Study on distinguish method for tractor-semitrailer steady state cornering performance[J]. Journal of Tianjin University of Technology and Education, 2006, 16 (1): 1- 3
[12]   杨秀建, 李西涛 半挂汽车列车操纵特性与横向稳定性的研究[J]. 汽车工程, 2012, 34 (12): 1107- 1113
YANG Xiu-jian, LI Xi-tao A study on the handling characteristics and lateral stability of tractor-semitrailer combination[J]. Automotive Engineering, 2012, 34 (12): 1107- 1113
[13]   韦超毅. 拖挂式房车列车操纵稳定性研究[D]. 镇江: 江苏大学, 2008.
WEI Chao-yi. Research on the handling stability of caravans [D]. Zhenjiang: Jiangsu University, 2008.
[14]   BAO J H, LI J L, YU Y. Lateral stability analysis of the tractor/full trailer combination vehicle [C]// Electric Information and Control Engineering. Wuhan: IEEE, 2011: 2294–2298.
[15]   杨秀建. 极限工况下汽车转向失稳的非线性动力学特性与主动控制研究[D]. 济南: 山东大学, 2009.
YANG Xiu-jian. Research on the nonlinear dynamics and active control for vehicle cornering destabilization in critical situations [D]. Jinan: Shandong University, 2009.
[16]   REN Y Y, ZHENG X L, LI X S. Handling stability of tractor semitrailer based on handling diagram [J]. Discrete Dynamics in Nature and Society, 2012: 350360.
[17]   TABATABAEI S H, ZAHEDI A, KHODAYARI A. The effects of the cornering stiffness variation on articulated heavy vehicle stability [C]// Vehicular Electronics and Safety. Istanbul: IEEE, 2012: 78–83.
[18]   OU C J, ZHOU G, LIU X D, et al. Simulation and analysis on handling stability of tractor-semitrailer [C]// Transportation Information and Safety. Wuhan: IEEE, 2015: 94–101.
[19]   张义花, 许洪国, 刘宏飞 遗传算法优化的双挂汽车列车主动力矩控制[J]. 华南理工大学学报: 自然科学版, 2017, 45 (4): 112- 117
ZHANG Yi-hua, XU Hong-guo, LIU Hong-fei Active torque control of tractor-trailer combination based on genetic algorithm optimization[J]. Journal of South China University of Technology: Natural Science Edition, 2017, 45 (4): 112- 117
[20]   余志生. 汽车理论: 第5版[M]. 北京: 机械工业出版社, 2009.
[1] Xiao-hua ZENG,Xing-qi WANG,Da-feng SONG,Nan-nan YANG,Zhen-wei WANG. Battery-health conscious energy management optimization in plug-in hybrid electric vehicles[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2206-2214.
[2] KE Jun,SHI Wen ku,QIAN Chen,LI Guo ming,YUAN Ke. Prediction and matching design method for stiffness of composite leaf spring[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2103-2110.