Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (7): 1225-1233    DOI: 10.3785/j.issn.1008-973X.2021.07.001
    
Coordinated control of hybrid electric vehicle based on extended state observer estimation
Jia-jia WANG(),Ying-feng CAI*(),Long CHEN,Shao-hua WANG,De-hua SHI
Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China
Download: HTML     PDF(1253KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A torque coordinated control strategy based on disturbances compensation was proposed in order to improve the mode switching stability of power-split hybrid electric vehicles. A multi-variable linear extended state observer was designed aiming at the problem of engine dynamic response oscillation and vehicle driving condition variation. Then its estimation accuracy of the above disturbances was verified from the frequency domain perspective. The influence law of different disturbances on the stability of basic motor compensation control was analyzed. The load disturbance has a greater influence on the vehicle mode switching response, and the peak value of the switching jerk can reach 24.5 m/s3. The coordinated control strategy of power sources torque redistribution algorithm based on disturbances compensation was proposed and verified by simulation. Results show that the control strategy can guarantee the system stability and smoothness of mode switching under the obvious interference.



Key wordshybrid electric vehicle (HEV)      mode switching      extended state observer      external disturbance      stability     
Received: 08 June 2020      Published: 05 July 2021
CLC:  U 463  
Fund:  国家自然科学基金资助项目(U1764257,51905219);江苏省重点研发计划资助项目(BE2016149);江苏省自然科学基金青年基金资助项目(BK20190844);江苏省高等学校自然科学研究资助项目(19KJB580001)
Corresponding Authors: Ying-feng CAI     E-mail: wjj751772554@163.com;caicaixiao0304@126.com
Cite this article:

Jia-jia WANG,Ying-feng CAI,Long CHEN,Shao-hua WANG,De-hua SHI. Coordinated control of hybrid electric vehicle based on extended state observer estimation. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1225-1233.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.07.001     OR     https://www.zjujournals.com/eng/Y2021/V55/I7/1225


基于扩张状态观测器估计的混合动力汽车协调控制

为了提高功率分流式混合动力汽车模式切换的稳定性,提出干扰补偿的转矩协调控制策略. 针对发动机动态响应振荡及车辆行驶工况多变的问题,设计多变量线性扩张状态观测器,从频域角度验证了观测器对于上述2种干扰的估计精确性. 研究不同干扰对基础电机补偿控制稳定性的影响,指出负载干扰对车辆模式切换响应的影响最大,引起的切换冲击最大可至24.5 m/s3. 提出基于干扰补偿的动力源转矩再分配算法,开展仿真验证. 结果表明,该协调控制策略在受到明显的外界干扰时能够保证系统的稳定性及模式切换的平顺性.


关键词: 混合动力汽车(HEV),  模式切换,  扩张状态观测器,  外界干扰,  稳定性 
Fig.1 Dual-planetary gear power-split system
工作模式 发动机 MG1 MG2 B1 说明
纯电动 锁止 车速较低,负荷较低,且SOC较大
混合驱动 锁止 整车负荷持续增加或SOC低
Tab.1 Typical working modes
Fig.2 Lever diagram of dual-planetary gear
Fig.3 Comparison between simulation and test of vehicle mode switching response
参数 数值
发动机 最大功率(转速) 54 kW(4 700 r/min)
发动机 最大扭矩 115 N·m
电机MG1 最大功率(转速) 15 kW(8 000 r/min)
电机MG1 最大扭矩 55 N·m
电机MG2 最大功率(转速) 30 kW(12 000 r/min)
电机MG2 最大扭矩 305 N·m
动力电池 容量 6.5 A·h
动力电池 额定电压 288 V
行星轮系特征参数 前排PG1 1.842
行星轮系特征参数 后排PG2 2.48
整车 满载质量 1 398 kg
整车 迎风面积 1.746 m2
整车 空气阻力系数 0.3
整车 滚动阻力系数 0.008
整车 滚动半径Rt 0.287 m
整车 主减速器速比io 3.93
整车 kp1/ki1 0.025/0.015
整车 kp2/ki2 0.5/0.000 1
Tab.2 Key component parameters of HEV
Fig.4 Block diagram of mode switching control for hybrid electric vehicle
Fig.5 Engine cold start resistance torque
Fig.6 Comparison of two kinds of coordinated control effects under engine torque disturbance
Fig.7 Comparison of two kinds of coordinated control effects under load disturbance
[1]   施德华, 蔡英凤, 汪少华, 等 系统效率最优的功率分流式混合动力汽车非线性预测控制[J]. 浙江大学学报: 工学版, 2019, 53 (12): 2271- 2279
SHI De-hua, CAI Ying-feng, WANG Shao-hua, et al Nonlinear predictive control of power split hybrid electric vehicle with optimal system efficiency[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (12): 2271- 2279
[2]   GEETHA A, SUBRAMANI C A comprehensive review on energy management strategies of hybrid energy storage system for electric vehicles[J]. International Journal of Energy Research, 2017, 41 (4): 1817- 1834
[3]   KOPRUBASI K, WESTERVELT E R, RIZZONI G. Toward the systematic design of controllers for smooth hybrid electric vehicle mode changes[C]// Proceedings of 2007 America Control Conference. New York: IEEE, 2007: 2985-2990.
[4]   温博轩, 王伟达, 项昌乐, 等 混联式混合动力系统动态响应协调控制[J]. 哈尔滨工业大学学报, 2016, 48 (1): 72- 79
WEN Bo-xuan, WANG Wei-da, XIANG Chang-le, et al Torque coordinated control for the multi-power in parallel-series HEV[J]. Journal of Harbin Institute of Technology, 2016, 48 (1): 72- 79
doi: 10.11918/j.issn.0367-6234.2016.01.011
[5]   童毅. 并联式混合动力系统动态协调控制问题的研究[D]. 北京: 清华大学, 2004.
TONG Yi. Study on the coordinated control issue in parallel hybrid electric system[D]. Beijing: Tsinghua University, 2004.
[6]   YOSHIOK A. Noise and vibration reduction technology in hybrid vehicle development[C]// SAE Paper. Traverse City: SAE, 2001: 2001-01-1415.
[7]   HUANG K, XIANG C, MA Y, et al Mode shift control for a hybrid heavy-duty vehicle with power-split transmission[J]. Energies, 2017, 10 (2): 177
doi: 10.3390/en10020177
[8]   ZHU F, CHEN L, YIN C, et al Dynamic modelling and systematic control during the mode transition for a multi-mode hybrid electric vehicle[J]. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, 2013, 227 (7): 1007- 1023
doi: 10.1177/0954407013477027
[9]   MA Y, HUANG K, XIANG C, et al. A control strategy to reduce torque variation for dual-mode power-split hybrid electric vehile during mode shift[C]// International Conference on Modeling, Identification and Control. Sousse: IEEE, 2016: 1-8.
[10]   LIN Y, QIN D, LIU Y, et al Control strategy for all the mode-switches of hybrid electric vehicle[J]. Advances in Mechanical Engineering, 2016, 8 (11): 1- 17
[11]   SUN J, XING G, LIU X, et al A novel torque coordination control strategy of a single-shaft parallel hybrid electric vehicle based on model predictive control[J]. Mathematical Problems in Engineering, 2015, (1): 1- 12
[12]   CHIANG C J, CHEN Y C, LIN C Y. Fuzzy sliding mode control for smooth mode changes of a parallel hybrid electric vehicle[C]// IEEE International Conference on Control and Automation. Taichung: IEEE, 2014: 1072-1077.
[13]   SU Y, HU M, SU L, et al Dynamic coordinated control during mode transition process for a compound power-split hybrid electric vehicle[J]. Mechanical Systems and Signal Processing, 2018, 107: 221- 240
doi: 10.1016/j.ymssp.2018.01.023
[14]   杜波, 秦大同, 段志辉 HEV多领域物理建模与模式切换控制仿真[J]. 系统仿真学报, 2013, 25 (7): 1668- 1674
DU Bo, QIN Da-tong, DUAN Zhi-hui Multi-domain physical modeling and mode switching control simulation of HEV[J]. Journal of System Simulation, 2013, 25 (7): 1668- 1674
[15]   DU B, YIN X F, YANG Y Robust control of mode transition for a single-motor full hybrid electric vehicle[J]. Advances in Mechanical Engineering, 2017, 9 (9): 1- 16
[16]   温博轩, 王伟达, 项昌乐, 等 机电复合传动系统基于μ-综合方法的鲁棒协调控制[J]. 机械工程学报, 2017, 53 (14): 88- 97
WEN Bo-xuan, WANG Wei-da, XIANG Chang-le, et al Coordination control based on μ-synthesize for electro-mechanical transmission[J]. Journal of Mechanical Engineering, 2017, 53 (14): 88- 97
doi: 10.3901/JME.2017.14.088
[17]   LIVSHIZ M, KAO M, WILL A. Engine torque control variation and analysis[EB/OL]. (2008-04-14). https://doi.org/10.4271/2008-01-1016.
[18]   CHEN L, XI G, SUN J Torque coordination control during mode transition for a series–parallel hybrid electric vehicle[J]. IEEE Transactions on Vehicular Technology, 2012, 61 (7): 2936- 2949
doi: 10.1109/TVT.2012.2200305
[19]   李天云, 朱建华, 刘智铭, 等 基于李雅普诺夫函数法的扩张状态观测器参数优化[J]. 哈尔滨理工大学学报, 2012, 17 (1): 50- 53
LI Tian-yun, ZHU Jian-hua, LIU Zhi-ming, et al Parameter optimization of extended state observer based on Lyapunov function method[J]. Journal of Harbin University of Science and Technology, 2012, 17 (1): 50- 53
doi: 10.3969/j.issn.1007-2683.2012.01.011
[20]   韩京清. 自抗扰控制技术: 估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008.
[21]   李宗俐. 基于干扰观测器的模型预测控制器设计与实现[D]. 长春: 吉林大学, 2018.
LI Zong-li. The design and realization of the model predictive controller based on disturbance observer[D]. Changchun: Jilin University, 2018.
[22]   赵治国, 蒋蓝星, 李蒙娜, 等 基于参考模型的复合功率分流系统模式切换中的转矩协调控制[J]. 汽车工程, 2018, 40 (10): 1132- 1138
ZHAO Zhi-guo, JIANG Lan-xing, LI Meng-na, et al Torque coordinated control during mode switching of a compound power-split hybrid system based on reference model[J]. Automotive Engineering, 2018, 40 (10): 1132- 1138
[23]   李海晓. 基于鲁棒控制理论的HEV模式切换协调控制策略[D]. 洛阳: 河南科技大学, 2018.
LI Hai-xiao. Mode switching coordinated control strategy of HEV based on robust control theory[D]. Luoyang: Henan University of Science and Technology, 2018.
[1] Ao ZHOU,Bin WANG,Jie-tao LI,Xin ZHOU,Wen-jun XIA. Long-term stability analysis and deformation prediction of soft soil foundation pit in Taihu Tunnel[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 692-701.
[2] En-yu WU,Guo-dong QIAN,Bin LI. Water adsorption in aluminum-based metal-organic framework for atmospheric water harvesting[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 186-192.
[3] Jia-yi SHEN,Meng KU,Li-zhong WANG. Stability analyses of submarine slopes based on shear band propagation method[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1299-1307.
[4] Xi LI,Jian HU,Jian-yong YAO,Ke-peng WEI,Peng-fei WANG,Hao-chen XING. High precision control of electromechanical system based on observer friction compensation[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1150-1158.
[5] Cheng-fei TAO,Hao ZHOU,Liu-bin HU,Zi-hua LIU,Ke-fa CEN. Dynamic characteristics of thermoacoustic instability of liquid spray combustion[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2108-2114.
[6] Yu-qiong WANG,Song GAO,Yu-hai WANG,Yi XU,Dong GUO,Ying-chao ZHOU. Trajectory tracking and stability control of high-speed autonomous vehicle[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1922-1929.
[7] Wu-ming LENG,Qi-shu ZHANG,Fang XU,Hui-kang LENG,Ru-song NIE,Xiu-hang YANG. Additional confining pressure field and enhancement effect of prestressed embankment[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 858-869.
[8] Hui-fang WANG,Chen-yu ZHANG. Prediction of voltage stability margin in power system based on extreme gradient boosting algorithm[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 606-613.
[9] Chi QIU,Jian-kun HUANG,Yu-cun HU,Xiao-ping GUO,Yun-qing HU. Influence of irrigation on slope stability of dump in arid desert area of Northwest China: a case study of Xinxing coal mine, Wuhai[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1467-1477.
[10] Yue-han XIE,Chao-sheng TANG,Bo LIU,Qing CHENG,Li-yang YIN,Ning-jun JIANG,Bin SHI. Water stability improvement of clayey soil based on microbial induced calcite precipitation[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1438-1447.
[11] Liang LV,Hong CHEN,Xun GONG,Hai-guang ZHAO,Yun-feng HU. Cooling system modeling and coolant temperature control for gasoline engine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1119-1129.
[12] Guo-jun WANG,Hong-guo XU,Hong-fei LIU. Handling stability analysis of B-double[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 299-306.
[13] Hai-hui YUAN,Yi-min GE,Chun-biao GAN. Adaptive robust control of dynamic walking of bipedal robots under uncertain disturbances[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2049-2057.
[14] Chao-ying XIA,Gang WU,Jia-li YU. Design of modular multilevel converter control system based on uniformly asymptotically stable observer[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2238-2247.
[15] Qian-ting ZHAO,Jian-yong YAO,Zhi-kai YAO. Finite time disturbance observer based robust integral tracking control[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1874-1882.