Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (1): 186-192    DOI: 10.3785/j.issn.1008-973X.2022.01.021
    
Water adsorption in aluminum-based metal-organic framework for atmospheric water harvesting
En-yu WU(),Guo-dong QIAN,Bin LI*()
School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1373KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A simple and green hydrothermal method was used to prepare an aluminum-based metal-organic framework (MOF) ZJU-210 with high stability in order to efficiently collect water from the atmosphere. The powder X-ray diffraction was used to analyze the crystal structure, and the thermogravimetric analyzer was used to test the stability and adsorption-desorption kinetics. The gas and vapor adsorption analyzer was used to analyze the pore structure and water adsorption performance. The analysis results show that ZJU-210 has a one-dimensional square channel along the c axis with a pore size of about 0.58 nm. The channel has abundant nitrogen and oxygen sites, which greatly enhances the hydrophilicity of channel. Water mass fraction reached 40% at a relative humidity of 20% (25 ℃) and a fast adsorption-desorption cycle was achieved. ZJU-210 is reusable and can still maintain its initial water adsorption performance after 1 000 water adsorption-desorption cycles. Out-door experiment shows the fast water release powered by natural sunlight. ZJU-210 was testified to have many advantages compared with classic desiccants (such as silica gel, zeolite, and hygroscopic salts), providing a promising strategy for developing next-generation hydrophilic material for atmosphere water harvesting.



Key wordsporous material      metal-organic framework      atmospheric water harvesting      hydrolytic stability      water adsorption isotherm     
Received: 28 July 2021      Published: 05 January 2022
CLC:  O 61  
  TQ 11  
Fund:  国家自然科学基金资助项目(51803179)
Corresponding Authors: Bin LI     E-mail: 2196090@zju.edu.cn;bin.li@zju.edu.cn
Cite this article:

En-yu WU,Guo-dong QIAN,Bin LI. Water adsorption in aluminum-based metal-organic framework for atmospheric water harvesting. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 186-192.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.01.021     OR     https://www.zjujournals.com/eng/Y2022/V56/I1/186


铝基金属-有机框架材料的水吸附性能与大气集水应用

为了从大气中高效收集水蒸气,采用简单绿色的水热法制备具有高稳定性的铝基金属-有机框架材料(MOF)ZJU-210. 采用粉末X射线衍射技术进行晶体结构分析,利用同步热分析仪测试样品的稳定性和吸附-脱附动力学,利用气体与蒸汽吸附仪分析样品的孔结构和水吸附性能. 分析结果显示,ZJU-210延c轴形成一维方孔道,孔道直径约为0.58 nm. ZJU-210的孔道内拥有丰富的氮位点和氧位点,增强了材料孔道的亲水性,使ZJU-210在20%相对湿度下(25 ℃)水质量分数高达40%,能够在极短的时间内完成吸附-脱附循环. ZJU-210具有良好的稳定性,经历1 000次水吸附-脱附循环后能够保持初始的吸水性能. 室外实验证明ZJU-210能通过太阳光完成快速脱附. 与传统干燥剂(如硅胶、沸石和吸湿盐)相比,ZJU-210具有许多优点,有望成为新一代大气集水材料.


关键词: 多孔材料,  金属-有机框架材料,  大气集水,  水稳定性,  等温水吸附曲线 
Fig.1 Schematic illustration of set-up for water-vapor adsorption kinetics and adsorption-desorption cycles
Fig.2 Schematic diagram of ZJU-210 crystal structure
Fig.3 Particle X-ray diffraction pattern of as-synthesized and activated samples of ZJU-210
Fig.4 Adsorption-desorption isotherms of N2 on ZJU-210 at 77 K and corresponding pore size distribution
Fig.5 Stability test of ZJU-210
Fig.6 Analysis of water absorption performance of ZJU-210
Fig.7 Simulation of water absorption process of ZJU-210
Fig.8 Adsorption-desorption kinetics curve of ZJU-210
Fig.9 Out-door atmospheric water harvesting by natural sunlight
[1]   ELIMELECH M, PHILLIP W A The future of seawater desalination: energy, technology, and the environment[J]. Science, 2011, 333 (6043): 712- 717
doi: 10.1126/science.1200488
[2]   KALMUTZKI M J, DIERCKS C S, YAGHI O M Metal-organic frameworks for water harvesting from air[J]. Advanced Materials, 2018, 30 (37): e1704304
doi: 10.1002/adma.201704304
[3]   GREENLEE L F, LAWLER D F, FREEMAN B D, et al Reverse osmosis desalination: water sources, technology, and today's challenges[J]. Water Research, 2009, 43 (9): 2317- 2348
doi: 10.1016/j.watres.2009.03.010
[4]   TU Y D, WANG R Z, ZHANG Y N, et al Progress and expectation of atmospheric water harvesting[J]. Joule, 2018, 2 (8): 1452- 1475
doi: 10.1016/j.joule.2018.07.015
[5]   SCRIVANI A, BARDI U A study of the use of solar concentrating plants for the atmospheric water vapour extraction from ambient air in the Middle East and Northern Africa region[J]. Desalination, 2008, 220 (1-3): 592- 599
doi: 10.1016/j.desal.2007.04.060
[6]   KIM H, YANG S, RAO S R, et al Water harvesting from air with metal-organic frameworks powered by natural sunlight[J]. Science, 2017, 356 (6336): 430- 432
doi: 10.1126/science.aam8743
[7]   ATTAR N F, KHALILI K, BEHMANESH J, et al. On the reliability of soft computing methods in the estimation of dew point temperature: the case of arid regions of Iran[J]. Computers and Electronics in Agriculture, 2018, 153: 334-346.
[8]   LI R Y, SHI Y, ALSAEDI M, et al Hybrid hydrogel with high water vapor harvesting capacity for deployable solar-driven atmospheric water generator[J]. Environmental Science and Technology, 2018, 52 (19): 11367- 11377
doi: 10.1021/acs.est.8b02852
[9]   YANG K J, SHI Y, WU M C, et al Hollow spherical SiO2 micro-container encapsulation of LiCl for high-performance simultaneous heat reallocation and seawater desalination [J]. Journal of Materials Chemistry A, 2020, 8 (4): 1887- 1895
doi: 10.1039/C9TA11721K
[10]   ZHAO F, ZHOU X, LIU Y, et al Super moisture-absorbent gels for all-weather atmospheric water harvesting[J]. Advance Materials, 2019, 31 (10): e1806446
doi: 10.1002/adma.201806446
[11]   ZHENG X, GE T S, WANG R Z. Recent progress on desiccant materials for solid desiccant cooling systems. [J] Energy, 2014, 74(1): 280-294.
[12]   KUMAR M, YADAV A Experimental investigation of design parameters of solar glass desiccant box type system for water production from atmospheric air[J]. Journal of Renewable and Sustainable Energy, 2015, 7 (3): e033122
[13]   HONICKE I M, SENKOVSKA I, BON V, et al Balancing mechanical stability and ultrahigh porosity in crystalline framework materials[J]. Angewandte Chemie-International Edition, 2018, 57 (42): 13780- 13783
doi: 10.1002/anie.201808240
[14]   JIAO L, SEOW J Y R, SKINNER W S, et al Metal-organic frameworks: structures and functional applications[J]. Materials Today, 2019, 27 (1): 43- 68
[15]   CANIVET J, FATEEVA A, GUO Y, et al Water adsorption in MOFs: fundamentals and applications[J]. Chemical Society Reviews, 2014, 43 (16): 5594- 617
doi: 10.1039/C4CS00078A
[16]   PAN T, YANG K, HAN Y Recent progress of atmospheric water harvesting using metal-organic frameworks[J]. Chemical Research in Chinese Universities, 2020, 36 (1): 33- 40
doi: 10.1007/s40242-020-9093-6
[17]   ZHANG J, LI P, ZANG X, et al Water adsorption properties and applications of stable metal-organic frameworks[J]. Acta Chimica Sinica, 2020, 78 (7): 597- 612
doi: 10.6023/A20050153
[18]   KARMAKAR A, MILEO P G M, BOK I, et al Thermo-responsive MOF/polymer composites for temperature-mediated water capture and release[J]. Angewandte Chemie-International Edition, 2020, 59 (27): 11003- 11009
doi: 10.1002/anie.202002384
[19]   KO N, HONG J, SUNG S, et al A significant enhancement of water vapour uptake at low pressure by amine-functionalization of UiO-67[J]. Dalton Transactions, 2015, 44 (5): 2047- 2051
doi: 10.1039/C4DT02582B
[20]   TANNERT N, ERNST S J, JANSEN C, et al Evaluation of the highly stable metal–organic framework MIL-53(Al)-TDC (TDC = 2, 5-thiophenedicarboxylate) as a new and promising adsorbent for heat transformation applications[J]. Journal of Materials Chemistry A, 2018, 6 (36): 17706- 17712
doi: 10.1039/C8TA04407D
[21]   HANIKEL N, PREVOT M S, YAGHIO M MOF water harvesters[J]. Nature Nanotechnology, 2020, 15 (5): 348- 355
doi: 10.1038/s41565-020-0673-x
[22]   SCHOENECKER P M, CARSON C G, JASUJA H, et al Effect of water adsorption on retention of structure and surface area of metal-organic frameworks[J]. Industrial and Engineering Chemistry Research, 2012, 51 (18): 6513- 6519
doi: 10.1021/ie202325p
[23]   ABDULHALIM R G, BHATT P M, BELMABKHOUT Y, et al A fine-tuned metal-organic framework for autonomous indoor moisture control[J]. Journal of the American Chemical Society, 2017, 139 (31): 10715- 10722
doi: 10.1021/jacs.7b04132
[24]   BRENNAN J K, BANDOSZ T J, THOMSON K T, et al Water in porous carbons[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 187: 539- 568
[25]   HANIKEL N, PREVOT M S, FATHIEH F, et al Rapid cycling and exceptional yield in a metal-organic framework water harvester[J]. ACS Central Science, 2019, 5 (10): 1699- 1706
doi: 10.1021/acscentsci.9b00745
[26]   CADIAU A, LEE J S, DAMASCENO B D, et al Design of hydrophilic metal organic framework water adsorbents for heat reallocation[J]. Advance Materials, 2015, 27 (32): 4775- 4780
doi: 10.1002/adma.201502418
[27]   REINSCH H, VANDERVEEN M A, GIL B, et al Structures, sorption characteristics, and nonlinear optical properties of a new series of highly stable aluminum MOFs[J]. Chemistry of Materials, 2012, 25 (1): 17- 26
[28]   FURUKAWA H, GANDARA F, ZHANG Y B, et al Water adsorption in porous metal-organic frameworks and related materials[J]. Journal of American Chemical Society, 2014, 136 (11): 4369- 4381
doi: 10.1021/ja500330a
[29]   KIM S I, YOON T U, KIM M B, et al Metal-organic frameworks with high working capacities and cyclic hydrothermal stabilities for fresh water production[J]. Chemical Engineering Journal, 2016, 286 (1): 467- 475
[30]   LI X, LI Z, XIA Q B, et al Effects of pore sizes of porous silica gels on desorption activation energy of water vapour[J]. Applied Thermal Engineering, 2007, 27 (5/6): 869- 876
[31]   SCHLUSENER C, JORDAN D N, XHINOVCI M, et al Probing the limits of linker substitution in aluminum MOFs through water vapor sorption studies: mixed-MOFs instead of mixed-linker CAU-23 and MIL-160 materials[J]. Dalton Transactions, 2020, 49 (22): 7373- 7383
doi: 10.1039/D0DT01044H
[32]   SEO Y K, YOON J W, LEE J S, et al Energy-efficient dehumidification over hierarchically porous metal-organic frameworks as advanced water adsorbents[J]. Advanced Materials, 2012, 24 (6): 806- 810
doi: 10.1002/adma.201104084
[33]   DE LANGE M F, GUTIERREZ-SEVILLANO J J, HAMAD S, et al Understanding adsorption of highly polar vapors on mesoporous MIL-100(Cr) and MIL-101(Cr): experiments and molecular simulations[J]. The Journal of Physical Chemistry C, 2013, 117 (15): 7613- 7622
doi: 10.1021/jp3128077
[34]   ZHENG J, VEMURI R S, ESTEVEZ L, et al Pore-engineered metal-organic frameworks with excellent adsorption of water and fluorocarbon refrigerant for cooling applications[J]. Journal of the American Chemical Society, 2017, 139 (31): 10601- 10604
doi: 10.1021/jacs.7b04872
[1] WANG Jia-Bang, ZHANG Guo-Quan. Research progress of porous materials with low dielectric constant[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(5): 957-961.