Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (11): 2108-2114    DOI: 10.3785/j.issn.1008-973X.2021.11.011
    
Dynamic characteristics of thermoacoustic instability of liquid spray combustion
Cheng-fei TAO(),Hao ZHOU*(),Liu-bin HU,Zi-hua LIU,Ke-fa CEN
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1457KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A laboratory-scale 3 kW liquid spray burner was used to explore the dynamic characteristics of liquid spray combustion instability. The dynamic characteristics of sound pressure and flame heat release rate in the combustion chamber under different equivalence ratios were measured, and nonlinear time series analysis methods such as phase space and recurrence plot were used to study the characteristics of thermoacoustic oscillation signal. When the air flow rate of the liquid spray burner gradually increased from 4.0 L/min to 9.5 L/min, the dynamic characteristics of thermoacoustic oscillation in the combustion chamber were different. When the air flow rate was from 4.0 L/min to 5.5 L/min, the sound pressure amplitude of the combustion chamber was between 20 Pa and 30 Pa. However, when the air flow rate was 6.0 L/min, the sound pressure amplitude suddenly increased to 100 Pa. The flame presents turbulent combustion noise, limit cycle, and semi-steady state. At the same time, the increase in air volume (decrease in the equivalence ratio) will trigger thermoacoustic instability, and the turbulent combustion noise of the combustion chamber will abruptly become a limit cycle oscillation.



Key wordsliquid spray combustion      thermoacoustic instability      combustion dynamics      nonlinearity      turbulent flame      time-series     
Received: 16 December 2020      Published: 05 November 2021
CLC:  TK 47  
Fund:  国家自然科学基金杰出青年科学基金资助项目(51825605)
Corresponding Authors: Hao ZHOU     E-mail: chengfei_tao@163.com;zhouhao@zju.edu.cn
Cite this article:

Cheng-fei TAO,Hao ZHOU,Liu-bin HU,Zi-hua LIU,Ke-fa CEN. Dynamic characteristics of thermoacoustic instability of liquid spray combustion. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2108-2114.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.11.011     OR     https://www.zjujournals.com/eng/Y2021/V55/I11/2108


液雾燃烧的热声不稳定动态特性

为了探究液雾燃烧不稳定的动态特性,在实验室尺度的3 kW液雾燃烧器上,通过测量不同当量比下燃烧室的声压和火焰热释放速率变化情况,并且使用非线性时间序列分析方法,如相空间重构和递归分析,研究热声振荡信号的特点. 当液雾燃烧器的风量从4.0 L/min逐渐增加到9.5 L/min后,燃烧室中热声振荡的动态特性不同. 当风量为4.0~5.5 L/min时,燃烧室的声压幅值为20~30 Pa;当风量为6.0 L/min时,燃烧室的声压幅值突然增大到100 Pa. 发生热声不稳定的液雾火焰将会呈湍流燃烧噪声、极限环、半稳态等非线性状态. 与此同时,风量的增加(当量比的减少)会触发液雾燃烧热声不稳定,燃烧室的湍流燃烧噪声会突变成极限环振荡.


关键词: 液雾燃烧,  热声不稳定,  燃烧动态特性,  非线性,  湍流火焰,  时间序列 
Fig.1 Structure and geometry dimensions of liquid spray combustor
Fig.2 Measurement equipment for thermoacoustic instability of liquid spray combustion
Fig.3 Changes of sound pressure amplitude under different air volume flow rates
Fig.4 Changes of flame chemiluminescence amplitude under different air volume flow rates
Fig.5 Fast Fourier analysis of limit cycle thermoacoustic instability under air flow rate of 7.0 L/min
Fig.6 Calculation of optimum time lag
Fig.7 Calculation of minimum embedding dimension
Fig.8 Time series of sound pressure signal under different air volume flow rates
Fig.9 Phase space of sound pressure signal under different air volume flow rates
Fig.10 Recurrence plot of sound pressure signal under different air volume flow rates
[1]   HUANG Y, YANG V Dynamics and stability of lean-premixed swirl-stabilized combustion[J]. Progress in Energy and Combustion Science, 2009, 35 (4): 293- 364
doi: 10.1016/j.pecs.2009.01.002
[2]   POINSOT T Prediction and control of combustion instabilities in real engines[J]. Proceedings of the Combustion Institute, 2017, 36 (1): 1- 28
doi: 10.1016/j.proci.2016.05.007
[3]   ZHAO D, LU Z, ZHAO H, et al A review of active control approaches in stabilizing combustion systems in aerospace industry[J]. Progress in Aerospace Sciences, 2018, 97: 35- 60
doi: 10.1016/j.paerosci.2018.01.002
[4]   石黎, 付忠广, 沈亚洲, 等 进口压力对预混燃烧不稳定性及NOx排放影响的大涡模拟 [J]. 动力工程学报, 2017, 37 (2): 111- 118
SHI Li, FU Zhong-guang, SHEN Ya-zhou, et al Large eddy simulation on the effects of inlet pressure on the premixed combustion instability and NOx emission [J]. Journal of Chinese Society of Power Engineering, 2017, 37 (2): 111- 118
doi: 10.3969/j.issn.1674-7607.2017.02.005
[5]   段润泽, 赵若霖, 刘联胜, 等 稳焰器结构对贫燃预混燃烧火焰不稳定性的影响[J]. 动力工程学报, 2018, 38 (12): 983- 987
DUAN Run-ze, ZHAO Ruo-lin, LIU Lian-sheng, et al Effects of stabilizer structure on the instability of lean premixed flame[J]. Journal of Chinese Society of Power Engineering, 2018, 38 (12): 983- 987
doi: 10.3969/j.issn.1674-7607.2018.12.006
[6]   ZHOU H, LIU Z H, TAO C F Mitigating self-excited thermoacoustic oscillations in a liquid fuel combustor using dual perforated plates[J]. Journal of the Acoustical Society of America, 2020, 148 (3): 1756- 1766
doi: 10.1121/10.0002007
[7]   ABHISHEK L P, JUN N, RYO A, et al Influences of liquid fuel atomization and flow rate fluctuations on spray combustion instabilities in a backward-facing step combustor[J]. Combustion and Flame, 2020, 220 (1): 337- 356
[8]   GUAN Y, LI L K B, AHN B, et al Chaos, synchronization, and desynchronization in a liquid-fueled diffusion-flame combustor with an intrinsic hydrodynamic mode[J]. Chaos, 2019, 29 (5): 1- 13
[9]   AHN B, LEE S, JUNG S, et al Nonlinear mode transition mechanisms of a self-excited Jet A-1 spray flame[J]. Combustion and Flame, 2019, 203: 170- 179
doi: 10.1016/j.combustflame.2019.02.008
[10]   杨向明, 杨尚荣, 杨岸龙, 等 同轴离心式喷嘴热声不稳定性递归分析[J]. 宇航学报, 2020, 41 (5): 608- 616
YANG Xiang-ming, YANG Shang-rong, YANG An-long, et al Recurrence analysis of thermoacoustic instabilities of a coaxial swirl injector[J]. Journal of Astronautics, 2020, 41 (5): 608- 616
[11]   JUNIPER M P, SUJITH R I Sensitivity and nonlinearity of thermoacoustic oscillations[J]. Annual Review of Fluid Mechanics, 2018, 50 (1): 661- 689
doi: 10.1146/annurev-fluid-122316-045125
[12]   ZOU Y, DONNER R V, MARWAN N, et al Complex network approaches to nonlinear time series analysis[J]. Physics Reports, 2019, 787: 1- 97
doi: 10.1016/j.physrep.2018.10.005
[13]   MARWAN N, ROMANA M C, KURTHS T J Recurrence plots for the analysis of complex systems[J]. Physics Reports, 2007, 438: 237- 329
doi: 10.1016/j.physrep.2006.11.001
[14]   UNNI V R, SUJITH R I Flame dynamics during intermittency in a turbulent combustor[J]. Proceedings of the Combustion Institute, 2017, 36 (3): 3791- 3798
doi: 10.1016/j.proci.2016.08.030
[15]   PAWAR S A, PANCHAGNULA M V, SUJITH R I Phase synchronization and collective interaction of multiple flamelets in a laboratory scale spray combustor[J]. Proceedings of the Combustion Institute, 2019, 37 (4): 5121- 5128
doi: 10.1016/j.proci.2018.08.045
[16]   NAIR V, SUJITH R I Intermittency as a transition state in combustor dynamics: an explanation for flame dynamics nearing lean blowout[J]. Combustion Science and Technology, 2015, 187 (10−12): 1821- 1835
[17]   王伟, 出口祥啓, 何永森, 等 涡脱落热声振荡中相似性及涡声锁频行为[J]. 物理学报, 2019, 68 (23): 1- 11
WANG Wei, DEGUCHI Y, HE Yong-sheng, et al Similarity and vortex-acoustic lock-on behavior in thermoacoustic oscillation involving vortex shedding[J]. Acta Physica Sinica, 2019, 68 (23): 1- 11
[18]   LIPIKA K, SUJITH R I Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout[J]. Journal of Fluid Mechanics, 2012, 713: 376- 397
doi: 10.1017/jfm.2012.463
[19]   GODAVARTHI V, PAWAR S A, UNNI V R, et al Coupled interaction between unsteady flame dynamics and acoustic field in a turbulent combustor[J]. Chaos, 2018, 28 (11): 1- 10
[20]   王玮, 肖俊峰, 高松, 等 空燃比对燃气轮机燃烧室燃烧不稳定性影响的数值研究[J]. 燃烧科学与技术, 2019, 25 (5): 439- 444
WANG Wei, XIAO Jun-feng, GAO Song, et al Numerical study on influences of air-fuel ratio on combustion instability in gas turbine combustor[J]. Journal of Combustion Science and Technology, 2019, 25 (5): 439- 444
[1] Hong-wei YING,Di WANG,Ding-ye XU,Li-sha ZHANG. Analysis on exit gradient of aquitard at bottom of foundation pit under dynamic confined water considering nonlinearity of soil[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2356-2363.
[2] Chao YANG,Yao-zhi LUO,Yan-feng ZHENG. Nonlinear dynamic analysis of shells using finite particle method[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1019-1030.
[3] Chen WANG,Zheng-zhi DENG,Da-wei MAO. Hydrodynamic performance of two vertical plates penetrating system mounted over stepped bottom[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 336-346.
[4] Chao-jun ZHOU,Ming-hui HUANG,Xin-jiang LU. Modeling for distributed parameter systems based on low-dimensional constrained embedding[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2154-2162.
[5] LIAO Zi-nan, SHAO Xu-dong, QIAO Qiu-heng, CAO Jun-hui, LIU Xiang-ning. Static test and finite element simulation analysis of transverse bending of steel-ultra-high performance concrete composite slabs[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1954-1963.
[6] ZOU Sheng-feng, LI Jin-zhu, WANG Zhong-jin, LAN Lu, WANG Wen-jun, XIE Xin-yu. Seepage test and empirical models for soils based on GDS apparatus[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 856-862.
[7] CHENG Zhun,LU Zhi xiong,GONG Jia hui,DIAO Xiu yong. Transfer function of steering system and acquisition method of ideal steering ratio[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(7): 1276-1283.
[8] CHEN Jian wen, WANG Ming yang, CHEN Wu jun, ZHANG Ning, ZHOU Han, ZHAO Bing. Response characteristics on tensile strains in stress space of laminate woven fabrics[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(11): 2150-2157.
[9] DENG Xue-lei, YANG Can-jun, BI Qian, FAN Jin-chang, SHANG Wei-yan. Optimize control strategy for servo-driven leg robots[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(4): 638-643.
[10] LI Jiang, ZHAO Ya-qiong, BAO Ye-hua. Voice processing technique for patients with stroke based on chao theory and surrogate data analysis[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(1): 36-41.
[11] XIE Xin-yu, HUANG Jie-qing, WANG Wen-jun, LI Jin-zhu. Influence of weight of soils on nonlinear finite strain consolidation for Ningbo soft clay[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(5): 827-834.
[12] WANG Zhong-jin, XIE Xin-yu, FANG Peng-fei,LI Jin-zhu, JIN Wei-liang. Analysis for calculation of nonlinear settlement of rigid long-short compound piles[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(3): 463-470.
[13] HUAN Rong-hua, SONG Ya-qing, ZHU Wei-qiu. Stochastic jump and bifurcation of a pantograph carbon strip suspension system[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(2): 321-326.
[14] SUN Ke-xu, HE Le-nian. A calibration technique based on frequency-domain characteristics for pipelined ADCs[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(8): 1393-1402.
[15] ZHU Ming-liang, DONG Shi-lin. Failure analysis of suspen-dome by vector form intrinsic
finite element method
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(9): 1611-1618.