A laboratory-scale 3 kW liquid spray burner was used to explore the dynamic characteristics of liquid spray combustion instability. The dynamic characteristics of sound pressure and flame heat release rate in the combustion chamber under different equivalence ratios were measured, and nonlinear time series analysis methods such as phase space and recurrence plot were used to study the characteristics of thermoacoustic oscillation signal. When the air flow rate of the liquid spray burner gradually increased from 4.0 L/min to 9.5 L/min, the dynamic characteristics of thermoacoustic oscillation in the combustion chamber were different. When the air flow rate was from 4.0 L/min to 5.5 L/min, the sound pressure amplitude of the combustion chamber was between 20 Pa and 30 Pa. However, when the air flow rate was 6.0 L/min, the sound pressure amplitude suddenly increased to 100 Pa. The flame presents turbulent combustion noise, limit cycle, and semi-steady state. At the same time, the increase in air volume (decrease in the equivalence ratio) will trigger thermoacoustic instability, and the turbulent combustion noise of the combustion chamber will abruptly become a limit cycle oscillation.
Fig.1Structure and geometry dimensions of liquid spray combustor
Fig.2Measurement equipment for thermoacoustic instability of liquid spray combustion
Fig.3Changes of sound pressure amplitude under different air volume flow rates
Fig.4Changes of flame chemiluminescence amplitude under different air volume flow rates
Fig.5Fast Fourier analysis of limit cycle thermoacoustic instability under air flow rate of 7.0 L/min
Fig.6Calculation of optimum time lag
Fig.7Calculation of minimum embedding dimension
Fig.8Time series of sound pressure signal under different air volume flow rates
Fig.9Phase space of sound pressure signal under different air volume flow rates
Fig.10Recurrence plot of sound pressure signal under different air volume flow rates
[1]
HUANG Y, YANG V Dynamics and stability of lean-premixed swirl-stabilized combustion[J]. Progress in Energy and Combustion Science, 2009, 35 (4): 293- 364
doi: 10.1016/j.pecs.2009.01.002
[2]
POINSOT T Prediction and control of combustion instabilities in real engines[J]. Proceedings of the Combustion Institute, 2017, 36 (1): 1- 28
doi: 10.1016/j.proci.2016.05.007
[3]
ZHAO D, LU Z, ZHAO H, et al A review of active control approaches in stabilizing combustion systems in aerospace industry[J]. Progress in Aerospace Sciences, 2018, 97: 35- 60
doi: 10.1016/j.paerosci.2018.01.002
[4]
石黎, 付忠广, 沈亚洲, 等 进口压力对预混燃烧不稳定性及NOx排放影响的大涡模拟 [J]. 动力工程学报, 2017, 37 (2): 111- 118 SHI Li, FU Zhong-guang, SHEN Ya-zhou, et al Large eddy simulation on the effects of inlet pressure on the premixed combustion instability and NOx emission [J]. Journal of Chinese Society of Power Engineering, 2017, 37 (2): 111- 118
doi: 10.3969/j.issn.1674-7607.2017.02.005
[5]
段润泽, 赵若霖, 刘联胜, 等 稳焰器结构对贫燃预混燃烧火焰不稳定性的影响[J]. 动力工程学报, 2018, 38 (12): 983- 987 DUAN Run-ze, ZHAO Ruo-lin, LIU Lian-sheng, et al Effects of stabilizer structure on the instability of lean premixed flame[J]. Journal of Chinese Society of Power Engineering, 2018, 38 (12): 983- 987
doi: 10.3969/j.issn.1674-7607.2018.12.006
[6]
ZHOU H, LIU Z H, TAO C F Mitigating self-excited thermoacoustic oscillations in a liquid fuel combustor using dual perforated plates[J]. Journal of the Acoustical Society of America, 2020, 148 (3): 1756- 1766
doi: 10.1121/10.0002007
[7]
ABHISHEK L P, JUN N, RYO A, et al Influences of liquid fuel atomization and flow rate fluctuations on spray combustion instabilities in a backward-facing step combustor[J]. Combustion and Flame, 2020, 220 (1): 337- 356
[8]
GUAN Y, LI L K B, AHN B, et al Chaos, synchronization, and desynchronization in a liquid-fueled diffusion-flame combustor with an intrinsic hydrodynamic mode[J]. Chaos, 2019, 29 (5): 1- 13
[9]
AHN B, LEE S, JUNG S, et al Nonlinear mode transition mechanisms of a self-excited Jet A-1 spray flame[J]. Combustion and Flame, 2019, 203: 170- 179
doi: 10.1016/j.combustflame.2019.02.008
[10]
杨向明, 杨尚荣, 杨岸龙, 等 同轴离心式喷嘴热声不稳定性递归分析[J]. 宇航学报, 2020, 41 (5): 608- 616 YANG Xiang-ming, YANG Shang-rong, YANG An-long, et al Recurrence analysis of thermoacoustic instabilities of a coaxial swirl injector[J]. Journal of Astronautics, 2020, 41 (5): 608- 616
[11]
JUNIPER M P, SUJITH R I Sensitivity and nonlinearity of thermoacoustic oscillations[J]. Annual Review of Fluid Mechanics, 2018, 50 (1): 661- 689
doi: 10.1146/annurev-fluid-122316-045125
[12]
ZOU Y, DONNER R V, MARWAN N, et al Complex network approaches to nonlinear time series analysis[J]. Physics Reports, 2019, 787: 1- 97
doi: 10.1016/j.physrep.2018.10.005
[13]
MARWAN N, ROMANA M C, KURTHS T J Recurrence plots for the analysis of complex systems[J]. Physics Reports, 2007, 438: 237- 329
doi: 10.1016/j.physrep.2006.11.001
[14]
UNNI V R, SUJITH R I Flame dynamics during intermittency in a turbulent combustor[J]. Proceedings of the Combustion Institute, 2017, 36 (3): 3791- 3798
doi: 10.1016/j.proci.2016.08.030
[15]
PAWAR S A, PANCHAGNULA M V, SUJITH R I Phase synchronization and collective interaction of multiple flamelets in a laboratory scale spray combustor[J]. Proceedings of the Combustion Institute, 2019, 37 (4): 5121- 5128
doi: 10.1016/j.proci.2018.08.045
[16]
NAIR V, SUJITH R I Intermittency as a transition state in combustor dynamics: an explanation for flame dynamics nearing lean blowout[J]. Combustion Science and Technology, 2015, 187 (10−12): 1821- 1835
[17]
王伟, 出口祥啓, 何永森, 等 涡脱落热声振荡中相似性及涡声锁频行为[J]. 物理学报, 2019, 68 (23): 1- 11 WANG Wei, DEGUCHI Y, HE Yong-sheng, et al Similarity and vortex-acoustic lock-on behavior in thermoacoustic oscillation involving vortex shedding[J]. Acta Physica Sinica, 2019, 68 (23): 1- 11
[18]
LIPIKA K, SUJITH R I Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout[J]. Journal of Fluid Mechanics, 2012, 713: 376- 397
doi: 10.1017/jfm.2012.463
[19]
GODAVARTHI V, PAWAR S A, UNNI V R, et al Coupled interaction between unsteady flame dynamics and acoustic field in a turbulent combustor[J]. Chaos, 2018, 28 (11): 1- 10
[20]
王玮, 肖俊峰, 高松, 等 空燃比对燃气轮机燃烧室燃烧不稳定性影响的数值研究[J]. 燃烧科学与技术, 2019, 25 (5): 439- 444 WANG Wei, XIAO Jun-feng, GAO Song, et al Numerical study on influences of air-fuel ratio on combustion instability in gas turbine combustor[J]. Journal of Combustion Science and Technology, 2019, 25 (5): 439- 444