Computer Technology and Control Engineering |
|
|
|
|
Modeling for distributed parameter systems based on low-dimensional constrained embedding |
Chao-jun ZHOU( ),Ming-hui HUANG,Xin-jiang LU*( ) |
College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China |
|
|
Abstract It is difficult to establish a precise model for the distributed parameter systems (DPSs), which is affected by spatiotemporal coupling characteristic, strong nonlinearity, complex energy exchange and unknown factors. Aiming at this problem, a data-driven based low-dimensional constrained embedding modeling method was proposed. The data local nonlinearity and the global nonlinearity were considered based on the data manifold distribution. By nonlinear mapping and manifold learning methods, the nonlinear connection of local manifold structure was guaranteed and the nonlocal manifold structure was constrained to avoid data chaos in the low-dimensional space. The least squares support vector machine (LS-SVM) was used to establish the temporal series model to obtain the dynamic features in time direction. A complete predictive model of the system was reconstructed by spatiotemporal integration. Experimental results of thermal process show that the proposed method can effectively establish a model of strongly nonlinear DPS. Compared with the traditional method, the proposed method has stronger modeling performance and predictive ability.
|
Received: 30 July 2018
Published: 21 November 2019
|
|
Corresponding Authors:
Xin-jiang LU
E-mail: jun9196@csu.edu.cn;luxj@csu.edu.cn
|
基于低维约束嵌入的分布参数系统建模
针对分布参数系统受时空耦合特性、强非线性、复杂的能量交换以及未知因素等的影响,难以精确建模的问题,提出基于数据驱动的低维约束嵌入建模方法. 以数据流形分布为基础,考虑数据局部非线性和全局非线性;通过非线性映射和流形学习方法,保证数据局部流形结构的非线性联系;约束非局部流形结构,避免数据在低维空间内发生混乱现象;采用最小二乘支持向量机建立时序模型,获得时间方向上的动态特征,并通过时空整合,重构系统完整的预测模型. 热过程的实验结果表明,所提出的方法能有效建立强非线性分布参数系统的模型,与传统方法对比,具有更强的建模性能与预测能力.
关键词:
分布参数系统,
强非线性,
流形学习,
核方法,
低维约束,
最小二乘支持向量机
|
|
[1] |
DONG J, WANG Q, WANG M, et al Data-driven quality monitoring techniques for distributed parameter systems with application to hot-rolled strip laminar cooling process[J]. IEEE Access, 2018, 6: 16646- 16654
doi: 10.1109/ACCESS.2018.2812919
|
|
|
[2] |
AGUILAR-LEAL O, FUENTES-AGUILAR R Q, CHAIREZ I, et al Distributed parameter system identification using finite element differential neural networks[J]. Applied Soft Computing, 2016, 43: 633- 642
doi: 10.1016/j.asoc.2016.01.004
|
|
|
[3] |
PANCHAL S, DINCER I, AGELIN-CHAAB M, et al Thermal modeling and validation of temperature distributions in aprismatic lithium-ion battery at different discharge rates and varying boundary conditions[J]. Applied Thermal Engineering, 2016, 96: 190- 199
doi: 10.1016/j.applthermaleng.2015.11.019
|
|
|
[4] |
WANG J W, WU H N Exponential pointwise stabilization of semi-linear parabolic distributed parameter systems via the Takagi-Sugeno fuzzy PDE model[J]. IEEE Transactions on Fuzzy Systems, 2016, 26 (1): 155- 173
|
|
|
[5] |
ALESSANDRI A, GAGGERO M, ZOPPOLI R Feedback optimal control of distributed parameter systems by using finite-dimensional approximation schemes[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23 (6): 984- 996
doi: 10.1109/TNNLS.2012.2192748
|
|
|
[6] |
DENG H, LI H X, CHEN G R Spectral-approximation-based intelligent modeling for distributed thermal processes[J]. IEEE Transactions on Control Systems Technology, 2005, 13 (5): 686- 700
doi: 10.1109/TCST.2005.847329
|
|
|
[7] |
BARONI S, GIANNOZZI P, TESTA A Green's-function approach to linear response in solids[J]. Physical Review Letters, 1987, 58 (18): 1861- 1864
doi: 10.1103/PhysRevLett.58.1861
|
|
|
[8] |
MITCHELL A R, GRIFFITHS D F. The finite difference method in partial differential equations [M]. London: Wiley, 1980.
|
|
|
[9] |
LUO B, HUANG T W, WU H N, et al Data-driven H∞ infinity control for nonlinear distributed parameter systems [J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26 (11): 2949- 2961
doi: 10.1109/TNNLS.2015.2461023
|
|
|
[10] |
JIANG M, DENG H Improved empirical eigenfunctions based model reduction for nonlinear distributed parameter systems[J]. Industrial and Engineering Chemistry Research, 2013, 52 (2): 934- 940
doi: 10.1021/ie301179e
|
|
|
[11] |
PARK H M, CHO D H The use of the Karhunen-Loève decomposition for the modeling of distributed parameter systems[J]. Chemical Engineering Science, 1996, 51 (1): 81- 98
doi: 10.1016/0009-2509(95)00230-8
|
|
|
[12] |
GAY D H, RAY W H Identification and control of distributed parameter systems by means of the singular value decomposition[J]. Chemical Engineering Science, 1995, 50 (10): 1519- 1539
doi: 10.1016/0009-2509(95)00017-Y
|
|
|
[13] |
ZHAO Z J, WANG X G, ZHANG C L, et al Neural network based boundary control of a vibrating string system with input deadzone[J]. Neurocomputing, 2018, 275: 1021- 1027
doi: 10.1016/j.neucom.2017.09.050
|
|
|
[14] |
董辉, 傅鹤林, 冷伍明 支持向量机的时间序列回归与预测[J]. 系统仿真学报, 2006, 18 (7): 1785- 1788 DONG Hui, FU He-lin, LENG Wu-ming Time series regression and prediction of support vector machine[J]. Journal of System Simulation, 2006, 18 (7): 1785- 1788
doi: 10.3969/j.issn.1004-731X.2006.07.014
|
|
|
[15] |
WANG J W, WU H N, YU Y, et al Mixed H2/H∞ fuzzy proportional-spatial integral control design for a class of nonlinear distributed parameter systems [J]. Fuzzy Sets and Systems, 2017, 306: 26- 47
doi: 10.1016/j.fss.2016.01.004
|
|
|
[16] |
QI C K, LI H X A Karhunen-Loève decomposition based Wiener modeling approach for nonlinear distributed parameter processes[J]. Industrial and Engineering Chemistry Research, 2008, 47 (12): 4184- 4192
doi: 10.1021/ie0710869
|
|
|
[17] |
ZHANG R D, TAO J L, LU R Q, et al Decoupled ARX and RBF neural network modeling using PCA and GA optimization for nonlinear distributed parameter systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29 (2): 457- 469
doi: 10.1109/TNNLS.2016.2631481
|
|
|
[18] |
QI C K, LI H X Nonlinear dimension reduction based neural modeling for distributed parameter processes[J]. Chemical Engineering Science, 2009, 64 (19): 4164- 4170
doi: 10.1016/j.ces.2009.06.053
|
|
|
[19] |
LU X J, ZOU W, HUANG M H Robust spatiotemporal LS-SVM modeling for nonlinear distributed parameter system with disturbance[J]. IEEE Transactions on Industrial Electronics, 2017, 64 (10): 8003- 8012
|
|
|
[20] |
LU X J, ZOU W, HUANG M H A novel spatiotemporal LS-SVM method for complex distributed parameter systems with applications to curing thermal process[J]. IEEE Transactions on Industrial Informatics, 2016, 12 (3): 1156- 1165
|
|
|
[21] |
LU X J, YIN F, HUANG M H Online spatiotemporal LS-SVM modeling approach for time-vary distributed parameter processes[J]. Industrial and Engineering Chemistry Research, 2017, 56 (25): 7314- 7321
doi: 10.1021/acs.iecr.7b00984
|
|
|
[22] |
ROWEIS S, SAUL L Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290 (5500): 2323- 2326
|
|
|
[23] |
MIAO A M , GE Z Q, SONG Z H, et al Nonlocal structure constrained neighborhood preserving embedding model and its application for fault detection[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 142: 184- 196
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|