Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (1): 152-159    DOI: 10.3785/j.issn.1008-973X.2020.01.018
Computer Technology, Information Engineering     
Hardware Trojan detection based on improved marginal Fisher analysis nearest neighbor selection
Xiao-han WANG(),Tao WANG*(),Yang ZHANG,Guang-kai LIU
Equipment Simulation Training Center, Army Engineering University Shijiazhuang Campus, Shijiazhuang 050003, China
Download: HTML     PDF(1385KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A hardware Trojan detection method based on marginal Fisher analysis was proposed aiming at the problem of low detection accuracy for small-scale hardware Trojan by side-channel analysis. The rule was defined to select the nearest neighbor samples. Then the projection subspace was constructed by reducing the distance between the samples and their nearest neighbor samples in the same class and increasing the distance between the samples and their nearest neighbor samples in different class. The difference features in the original side-channel signals was found without any assumptions about data distribution, and the detection of hardware Trojan was achieved. The hardware Trojan detection experiment in AES encryption circuit shows that the hardware Trojan whose scale is 0.02% of the original circuit can be detected by the method. The method is better than existing detection methods.



Key wordsintegrated circuit      side-channel analysis      hardware Trojan detection      manifold learning      marginal Fisher analysis     
Received: 06 March 2019      Published: 05 January 2020
CLC:  TN 918  
Corresponding Authors: Tao WANG     E-mail: wxh2225@126.com;T_Wang_mail@163.com
Cite this article:

Xiao-han WANG,Tao WANG,Yang ZHANG,Guang-kai LIU. Hardware Trojan detection based on improved marginal Fisher analysis nearest neighbor selection. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 152-159.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.01.018     OR     http://www.zjujournals.com/eng/Y2020/V54/I1/152


改进边界Fisher分析近邻选择的硬件木马检测

针对旁路分析技术对小规模硬件木马检测精度低的问题,提出基于边界Fisher分析的硬件木马检测方法.定义规则式选择近邻样本,以减小样本与其同类近邻样本间距离和增大样本与其异类近邻样本间距离的方式构建投影子空间,在不对数据分布作任何假设的前提下,提取原始功耗旁路信号中的差异特征,实现硬件木马检测. AES加密电路中的硬件木马检测实验表明,该方法能够检测出占原始电路规模0.02%的硬件木马,优于已有的检测方法.


关键词: 集成电路,  旁路分析,  硬件木马检测,  流形学习,  边界Fisher分析 
Fig.1 MFA method analysis
Fig.2 Motion trend of samples after improvement
Fig.3 Detection results of Trojan 1 using K-L transform, kernel MMC, MFA and improved MFA
Fig.4 Detection results of Trojan 5 using K-L transform, kernel MMC, MFA and improved MFA
Fig.5 Detection results comparison of different scale hardware Trojans
Fig.6 Detection results of 10 chips to be tested
Fig.7 Detection results of first group of experiments using improved MFA
[1]   DOFE J, FREY J, YU Q. Hardware security assurance in emerging IoT applications [C]// Proceedings of IEEE International Symposium on Circuits and Systems. Montreal: IEEE, 2016: 2050-2053.
[2]   BHUNIA S, ABRAMOVICI M, AGRAWAL D, et al Protection against hardware Trojan attacks: towards a comprehensive solution[J]. IEEE Design Test Computer, 2013, 30 (3): 6- 17
doi: 10.1109/MDT.2012.2196252
[3]   WANG X, TEHRANIPOOR M, PLUSQUELLIC J, et al. Detecting malicious inclusions in secure hardware: challenges and solutions [C]// Proceedings of IEEE International Workshop on Hardware-Oriented Security and Trust. Anaheim: IEEE, 2008: 15-19.
[4]   WOLFF F, PAPACHRISTOU C, BHUNIA S, et al. Towards Trojan free trusted ICs: problem analysis and detection scheme [C]// Proceedings of Design, Automation and Test in Europe. Munich: IEEE, 2008: 1362-1365.
[5]   CHAKRABORTY R S, NARASIMHAN S, BHUNIA S, et al. Hardware Trojan: threats and emerging solutions [C]// Proceedings of IEEE International Workshop on High Level Design Validation and Test Workshop. San Francisco: IEEE, 2009: 166-171.
[6]   AGRAWAL D, BAKTIR S, KARAKOYUNLU D, et al. Trojan detection using IC fingerprinting [C]// Proceedings of IEEE Symposium on Security and Privacy. Berkeley: IEEE, 2007: 296-310.
[7]   BALASCH J, GIERLICHS B, VERBAUWHEDE I. Electromagnetic circuit fingerprints for Hardware Trojan detection [C]// Proceedings of IEEE International Symposium on Electromagnetic Compatibility. Dresden: IEEE, 2015: 246-251.
[8]   XIAO K, ZHANG X H, TEHRANIPOOR M A clock sweeping technique for detecting hardware trojans impacting circuits delay[J]. IEEE Design and Test of Computers, 2013, 30 (2): 26- 34
doi: 10.1109/MDAT.2013.2249555
[9]   NOWROZ A N, HU K, KOUSHANFAR F, et al Novel techniques for high-sensitivity hardware Trojan detection using thermal and power maps[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2014, 33 (12): 1792- 1805
doi: 10.1109/TCAD.2014.2354293
[10]   STELLARI F, SONG P, WEGER A J, et al. Verification of untrusted chips using trusted layout and emission measurements [C]// Proceedings of IEEE International Symposium on Hardware-Oriented Security and Trust. Arlington: IEEE, 2014: 19-24.
[11]   薛明富, 王箭, 胡爱群 自适应优化的二元分类型硬件木马检测方法[J]. 计算机学报, 2018, 41 (2): 439- 451
XUE Ming-fu, WANG Jian, HU Ai-qun Adaptive optimization of two-class classification-based hardware Trojan detection method[J]. Journal of Computers, 2018, 41 (2): 439- 451
doi: 10.11897/SP.J.1016.2018.00439
[12]   NARASIMHAN S, WANG X, DU D, et al. TeSR: a robust temporal self-referencing approach for hardware Trojan detection [C]// Proceedings of IEEE International Symposium on Hardware-Oriented Security and Trust. San Diego: IEEE, 2011: 71-74.
[13]   BANGA M, MICHAEL S H. A novel sustained vector technique for the detection of hardware Trojans [C]// Proceedings of IEEE International Conference on VLSI Design. New Delhi: IEEE, 2009: 327–332.
[14]   张鹏, 王新成, 周庆 基于投影寻踪分析的芯片硬件木马检测[J]. 通信学报, 2013, 34 (4): 122- 126
ZHANG Peng, WANG Xin-cheng, ZHOU Qing Hardware Trojans detection based on projection pursuit[J]. Journal on Communications, 2013, 34 (4): 122- 126
[15]   李雄伟, 王晓晗, 张阳, 等 一种基于核最大间距准则的硬件木马检测新方法[J]. 电子学报, 2017, 45 (3): 656- 661
LI Xiong-wei, WANG Xiao-han, ZHANG Yang, et al A new hardware Trojan detection method based on kernel maximum margin criterion[J]. Acta Electronica Sinica, 2017, 45 (3): 656- 661
doi: 10.3969/j.issn.0372-2112.2017.03.023
[16]   赵毅强, 刘沈丰, 何家骥, 等 基于自组织竞争神经网络的硬件木马检测方法[J]. 华中科技大学学报: 自然科学版, 2016, 44 (2): 51- 55
ZHAO Yi-qiang, LIU Shen-feng, HE Jia-ji, et al Hardware Trojan detection technology based on self-organizing competition neural network[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2016, 44 (2): 51- 55
[17]   YAN S, XU D, ZHANG B, et al Graph embedding and extensions: a general framework for dimensionality reduction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29 (1): 40- 51
doi: 10.1109/TPAMI.2007.250598
[18]   何进荣, 丁立新, 李照奎, 等 基于边界判别投影的数据降维[J]. 软件学报, 2014, 25 (4): 826- 838
HE Jin-rong, DING Li-xin, LI Zhao-kui, et al Margin discriminant projection for dimensionality reduction[J]. Journal of Software, 2014, 25 (4): 826- 838
[19]   毛莎莎. 基于贪婪优化和投影变换的集成分类器算法研究[D]. 西安: 西安电子科技大学, 2014.
MAO Sha-sha. A study of classifier ensemble methods based on greedy optimization and projection transformation [D]. Xi'an: Xi'an University of Electronic Science and Technology, 2014.
[1] Chao-jun ZHOU,Ming-hui HUANG,Xin-jiang LU. Modeling for distributed parameter systems based on low-dimensional constrained embedding[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2154-2162.
[2] ZHANG Sheng zhou, SUN Ling ling, WEN Jin cai, LIU Jun. High performance D-band passive mixer in dual drain/resistive modes[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1815-1822.
[3] ZHANG Bo, PAN Wei-wei, YE Yi, ZHENG Yong-jun, SHI Zheng, YAN Xiao-lang. Design and application of test structure array based on modular unit[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(5): 837-842.
[4] MENG Xin, SHEN Hai-bin, YAN Xiao-lang. SoC performance modeling methodology and implementation based
on transaction dataflow
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(2): 314-322.