Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (11): 2100-2107    DOI: 10.3785/j.issn.1008-973X.2021.11.010
    
Differential power compensation’s adiabatic calorimetry method based on scanning heating mode
Ming-yang YUAN(),Qi-yue XU,Jiong DING,Shu-liang YE*()
Institute of Industry and Trade Measurement Technology, China Jiliang University, Hangzhou 310018, China
Download: HTML     PDF(1412KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A differential power compensation adiabatic scanning calorimetry method was proposed, in order to solve the problems of low reaction detection efficiency, low reaction judgment sensitivity, and limited adiabatic performance of traditional adiabatic accelerating calorimeter. During the excitation stage of sample decomposition reaction, scanning mode is used to heat up the entire two-channel reaction system at a constant rate, and in order to adapt to the reaction environment of complex working condition, three dynamic reaction detection methods based on scanning baseline, i.e., two-channel heating power difference, two-channel sample temperature difference, and sample temperature rise rate, are used at the same time to improve the reaction detection efficiency and sensitivity. When the reaction happens, the differential power compensation control method and the dynamic adiabatic tracking method based on the constant temperature baseline are combined, making the sample achieve close to ideal adiabatic reaction process. The experimental verification with di-tert-butyl peroxide (DTBP) as the experimental object shows that the differential power compensation adiabatic scanning calorimetry method can significantly improve the reaction detection efficiency and sensitivity, and obtain more accurate thermal decomposition characteristics and kinetic parameters within the scan rate range of 0.3 ℃/min to 0.7 ℃/min compared with traditional adiabatic accelerating calorimetry method.



Key wordsdifferential adiabatic scanning calorimetry      dynamic adiabatic tracking      power compensation      thermalinertia      reaction detection     
Received: 11 December 2020      Published: 05 November 2021
CLC:  TQ 013.2  
Fund:  国家自然科学基金资助项目(22003059,21927815);浙江省基础公益研究计划资助项目(LGF18B030001)
Corresponding Authors: Shu-liang YE     E-mail: ethan_yuan@qq.com;itmt_paper@126.com
Cite this article:

Ming-yang YUAN,Qi-yue XU,Jiong DING,Shu-liang YE. Differential power compensation’s adiabatic calorimetry method based on scanning heating mode. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2100-2107.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.11.010     OR     https://www.zjujournals.com/eng/Y2021/V55/I11/2100


基于扫描升温模式的差示功率补偿绝热量热方法

为了解决传统绝热加速量热仪反应检测效率低、反应判断灵敏度不高、绝热性能受限的问题,提出差示功率补偿绝热扫描量热方法. 在实验样品分解反应的激发阶段,用扫描模式匀速升温,并采用基于扫描基线的两通道补偿功率差、温差和样品温升速率3种动态反应检测方法并行进行检测,以适应复杂工况的反应环境,提高反应检测效率和灵敏度;当判断发生反应后,结合差示功率补偿控制和基于恒温基线的动态绝热追踪,使样品实现接近理想的绝热反应过程. 以过氧化二叔丁基(DTBP)为实验对象进行实验验证,结果表明,与传统绝热加速量热方法相比,差示功率补偿绝热扫描量热方法在0.3~0.7 ℃/min的扫描速率范围内,能明显提高反应检测效率和灵敏度,并可以得到更准确的热分解特性参数和动力学参数.


关键词: 差示绝热扫描量热,  动态绝热追踪,  功率补偿,  热惰性,  反应检测 
Fig.1 Structure diagram of dual-channel furnace
Fig.2 Differential adiabatic scanning calorimetric temperature control process
Fig.3 Expected temperature curve of sample in differential power compensation adiabatic scanning calorimetric process
Fig.4 Baseline temperature control curve for uniform scanning
Fig.5 Three baseline curves obtained during scanning heating stage of scanning baseline
Fig.6 Temperature control curve of step constant temperature baseline
Fig.7 Two baseline curves obtained during constant temperature stage of constant temperature baseline
Fig.8 Differential adiabatic calorimetry experimental platform
Fig.9 Experimental curve of three calorimetry mode
量热模式 θ0/℃ vmax/(℃·min?1 Δθ′/℃ L/min
差示功率补偿绝热
扫描量热方法
120~130 16~35 86~98 300~410
低热惰性扫描量热方法 135~140 7~20 60~70 160~260
差示绝热量热方法 112~127 6~18 80~94 500-600
Tab.1 Analysis of thermal decomposition characteristics in different calorimetry experiments
Rs/(℃·min?1 θ0/℃ vmax/(℃·min?1 Δθ′/℃
0.3 124~126 13~24 86~94
0.5 120~125 16~27 91~98
0.7 124~129 17~32 89~96
Tab.2 Analysis of thermal decomposition characteristics of calorimetry experiment at different scanning rates
Fig.10 Experimental curves of time-temperature at three scanning rates
w/% θ0/℃ vmax/(℃·min?1 Δθ′/℃
10 128~135 0.9~1.7 42~49
15 120~130 16.0~35.0 85~94
20 115~123 38.0~50.0 104~114
Tab.3 Analysis of thermal decomposition characteristics in different DTBP mass fractions
Rs/(℃·min?1 n A/(1015 s?1) E/(105 kJ·mol?1
0.3 1 3.75~34.10 1.56~1.63
0.5 1 6.48~9.95 1.58~1.59
0.7 1 3.66~6.56 1.55~1.58
Tab.4 Thermal degradation kinetics analysis at different scanning rates
w/% n A/s?1 E/(105 kJ·mol?1
10 1 2.53×1019~4.03×1020 1.87~1.96
15 1 3.66×1015~3.41×1016 1.55~1.60
20 1 2.46×1015~4.53×1015 1.54~1.57
Tab.5 Thermal degradation kinetics analysis in different DTBP mass fractions
[1]   TOWNSEND D I, TOU J C Thermal hazard evaluation by an accelerating rate calorimeter[J]. Thermochimica Acta, 1980, 37 (1): 1- 30
doi: 10.1016/0040-6031(80)85001-5
[2]   FISHERH G, GOETZ D D Determination of self-accelerating decomposition temperatures using the accelerating rate calorimeter[J]. Journal of Loss Prevention in the Process Industries, 1991, 4 (5): 305- 306
doi: 10.1016/0950-4230(91)80044-U
[3]   张广源, 李志华, 金韶华, 等 加速绝热量热仪用于含能材料热分解研究进展[J]. 兵器装备工程学报, 2016, 37 (4): 85- 88
ZHANG Guang-yuan, LI Zhi-hua, JIN Shao-hua, et al Research progress of accelerated absolute calorimeter for thermal decomposition of energy-containing materials[J]. Journal of Ordnance Equipment Engineering, 2016, 37 (4): 85- 88
doi: 10.11809/scbgxb2016.04.021
[4]   TOU J C, WHITING L F The thermokinetic performance of an accelerating rate calorimeter[J]. Thermochimica Acta, 1981, 48 (1/2): 21- 42
[5]   钱新明, 刘丽, 张杰 绝热加速量热仪在化工生产热危险性评价中的应用[J]. 中国安全生产科学技术, 2005, 1 (4): 13- 18
QIAN Xin-ming, LIU Li, ZHANG Jie Application of adiabatic accelerated calorimeter in thermal hazard assessment of chemical production[J]. China Safety in Production Science and Technology, 2005, 1 (4): 13- 18
[6]   KOSSOY A, SHEINMAN I Effect of temperature gradient in sample cells of adiabatic calorimeters on data interpretation[J]. Thermochimica Acta, 2010, 500 (1): 93- 99
[7]   KOSSOY A An in-depth analysis of some methodical aspects of applying pseudo-adiabatic calorimetry[J]. Thermochimica Acta, 2020, 683
[8]   WILCOCK E, ROGERS R L A review of the phi factor during runaway conditions[J]. Journal of Loss Prevention in the Process Industries, 1997, 10 (5): 289- 302
[9]   丁炯, 陈琪, 许启跃, 等 融合C80数据的绝热加速量热法热惯量因子修正[J]. 化工学报, 2019, 70 (1): 417- 424
DING Jiong, CHEN Qi, XU Qi-yue, et al Thermal inertia factor modification of adiabatic accelerated calorimetry with C80 data fusion[J]. Chinese Journal of Chemical Industry, 2019, 70 (1): 417- 424
[10]   孙金华, 丁辉. 化学物质热危险性评价[M]. 北京: 科学出版社, 2005.
[11]   金满平, 孙峰, 石宁, 等 水和弱酸对过氧化氢异丙苯热危险性的影响[J]. 化工学报, 2012, 63 (12): 4096- 4102
JIN Man-ping, SUN Feng, SHI Ning, et al Effects of water and weak acid on the risk of hydroperoxide isopropyl phenyl fever[J]. Chinese Journal of Chemical Industry, 2012, 63 (12): 4096- 4102
doi: 10.3969/j.issn.0438-1157.2012.12.051
[12]   李智 浅谈化工工艺设计中安全危险的问题[J]. 中国新技术新产品, 2016, (5): 178- 178
LI Zhi Discussion on safety hazards in chemical process design[J]. China New Technology and New Products, 2016, (5): 178- 178
doi: 10.3969/j.issn.1673-9957.2016.05.143
[13]   陈利平, 陈网桦, 彭金华, 等 间歇与半间歇反应热失控危险性评估方法[J]. 化工学报, 2008, (12): 2963- 2970
CHEN Li-ping, CHEN Wang-hua, PENG Jin-hua, et al Risk assessment method for intermittent and semi-intermittent reaction heat out of control[J]. Chinese Journal of Chemical Industry, 2008, (12): 2963- 2970
doi: 10.3321/j.issn:0438-1157.2008.12.001
[14]   陈网桦, 彭金华, 陈利平. 化工工艺的热安全: 风险评估与工艺设计[M]. 北京: 科学出版社, 2009: 71-72.
[15]   丁炯, 王继晨, 郭璐, 等 基于动态特性补偿的绝热加速量热仪温度随动控制优化[J]. 传感技术学报, 2012, 31 (12): 1805- 1810
DING Jiong, WANG Ji-chen, GUO Lu, et al Temperature tracking control optimization of adiabatic accelerated calorimeter based on dynamic characteristic compensation[J]. Journal of Sensing Technology, 2012, 31 (12): 1805- 1810
[16]   WANG S, YU S, SIEDLER M, et al A power compensated differential scanning calorimeter for protein stability characterization[J]. Sensors and Actuators, 2018, 256: 946- 952
doi: 10.1016/j.snb.2017.10.034
[17]   CHIPPETT S. Low thermal inertia scanning adiabatic calorimeter: US7021820[P]. 2006-04-12.
[18]   DING J, YU L, WANG J, et al A kinetic-based approach in accelerating rate calorimetry with the varying thermal inertia consideration[J]. Journal of Thermal Analysis and Calorimetry, 2019, 678: 178304
doi: 10.1007/s10973-019-09081-z
[19]   WU F L. Differential adiabatic compensation calorimeter and methods of operation: US20150124851A1 [P]. 2015-01-02.
[20]   邹翠, 吴耿, 曾冬铭 差分加速量热仪在热失控动力学研究中的应用[J]. 徐州工程学院学报:自然科学版, 2015, 30 (3): 53- 58
ZOU Cui, WU Geng, ZENG Dong-ming Application of differential acceleration calorimeter in the study of thermal runaway dynamics[J]. Journal of Xuzhou University of Engineering: Natural Science Edition, 2015, 30 (3): 53- 58
doi: 10.3969/j.issn.1674-358X.2015.03.009
[21]   许启跃, 丁炯, 杨遂军, 等. 一种基于温差变化的绝热反应起点判断和温度追踪方法: CN107389723B [P]. 2019-08-27.
[22]   XU Q, DING J, YANG S, et al Modeling of a power compensated adiabatic reaction system for temperature control design and simulation analyses[J]. Thermochimica Acta, 2017, 657: 104- 109
doi: 10.1016/j.tca.2017.09.026
[23]   谢嘉林, 王晓娜, 叶树亮, 等 应用于自加速分解反应的动态温差检测方法[J]. 中国计量大学学报, 2012, 29 (1): 8- 13
XIE Jia-lin, WANG Xiao-na, YE Shu-liang, et al Dynamic temperature difference detection method for self-accelerating decomposition reaction[J]. Journal of China University of Econometry, 2012, 29 (1): 8- 13
[24]   KOSSOY A A, SINGH J, KOLUDAROVA E Y Mathematical methods for application of experimental adiabatic data: an update and extension[J]. Journal of Loss Prevention in the Process Industries, 2015, 33: 88- 100
doi: 10.1016/j.jlp.2014.11.014
[25]   王慧欣, 梁广荣, 张宏哲 二叔丁基过氧化物的热失控动力学研究[J]. 中国安全科学学报, 2012, 22 (1): 76- 81
WANG Hui-xin, LIANG Guang-rong, ZHANG Hong-zhe Study on thermal runaway kinetics of tert-butyl peroxide[J]. Chinese Journal of Safety Science, 2012, 22 (1): 76- 81
doi: 10.3969/j.issn.1003-3033.2012.01.013
[26]   RODUIT B, HARTMANN M, FOLLY P, et al Prediction of thermal stability of materials by modified kinetic and model selection approaches based on limited amount of experimental points[J]. Thermochimica Acta, 2014, 579 (5): 31- 39
[27]   KERSTEN R J A, BOERS M N, STORK M M, et al Results of a Round-Robin with di-tertiary-butyl peroxide in various adiabatic equipment for assessment of runaway reaction hazards[J]. Journal of Loss Prevention in the Process Industries, 2005, 18 (3): 145- 151
doi: 10.1016/j.jlp.2005.03.003
[1] GUAN Cheng, WANG Fei, XIE Ze-zhe, XIAO Yang. Excavator hydraulic hybrid system based on differential power compensation[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(5): 813-820.