Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (5): 858-869    DOI: 10.3785/j.issn.1008-973X.2020.05.003
Civil Engineering, Traffic Engineering     
Additional confining pressure field and enhancement effect of prestressed embankment
Wu-ming LENG1(),Qi-shu ZHANG1,Fang XU1,*(),Hui-kang LENG2,Ru-song NIE1,Xiu-hang YANG1
1. School of Civil Engineering, Central South University, Changsha 410075, China
2. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
Download: HTML     PDF(2665KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

ABAQUS code was used to establish a finite element model of prestressed embankment (PE) and the distribution characteristics of the additional confining pressure field in a PE with a lateral pressure plate (LPP) width of 1.2 m and a slope ratio of 1 : 1 were analyzed. Results indicate that with the increase of the horizontal depth from the embankment slope surface, the additional confining pressure field under the coverage region of the LPP gradually varies from an “abdominal drum shape” distribution in shallow layers to a relatively uniform distribution in deeper layers. The additional confining pressure in three external regions of the LPP initially increases to a peak value and subsequently decreases with increasing horizontal depth, and the prestress propagates to the core zones mainly bearing the loading with different peak stress diffusing angles. The peak stress diffusing angle in the region beyond the left and right sides of the LPD is greater than that in the region beyond the upper side, but less than that in the region beyond the lower side. The overall stability of a PE was analyzed based on the strength reduction method, and a design method/idea with corresponding implementing procedures was proposed for optimizing the LPP spacing. A series of large-scale static and dynamic triaxial tests on a typical railway embankment filling were performed, substantiating that PE could effectively improve the ability of the embankment soil to resist deformation and static and dynamic loads. An empirical formula correlating the critical dynamic stress with the confining pressure was established, which provides a reference for determining the required confining pressure increment for railway embankments.



Key wordsprestressed embankment      additional confining pressure field      peak confining pressure diffusing angle      stability      plates spacing      static and dynamic triaxial test      critical dynamic stress     
Received: 12 April 2019      Published: 05 May 2020
CLC:  TU 111  
Corresponding Authors: Fang XU     E-mail: wmleng@csu.edu.cn;fangxu@csu.edu.cn
Cite this article:

Wu-ming LENG,Qi-shu ZHANG,Fang XU,Hui-kang LENG,Ru-song NIE,Xiu-hang YANG. Additional confining pressure field and enhancement effect of prestressed embankment. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 858-869.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.05.003     OR     http://www.zjujournals.com/eng/Y2020/V54/I5/858


预应力路堤附加围压场与围压增强效应

利用ABAQUS建立预应力路堤(PE)三维有限元模型,以侧压板(LPP)宽度1.2 m,边坡坡率1∶1为例,分析其内部附加围压场的分布特征. 结果表明:随距路堤坡面水平向深度增加,板体覆盖侧附加围压由浅层 “腹鼓形”差异分布逐渐过渡至深部的较均匀分布;板体3个外延区的附加围压均随坡面水平向内深度先增后减,以不同峰值围压扩散角将预应力扩散至路堤受荷核心区,且峰值扩散角依次为:板外上侧<板外左、右两侧<板外下侧. 基于强度折减法,分析预应力路堤整体稳定性能,并探寻板间距的优化设计方法和思路. 开展典型路堤填料的系列静动三轴试验,论证预应力加固结构能有效提高填料的静动力抗载和抗变形性能,并建立填料临界动应力与围压间的经验式,可以为补强铁路路堤土围压提供参考.


关键词: 预应力路堤,  附加围压场,  峰值围压扩散角,  稳定性,  板间距,  静动三轴试验,  临界动应力 
Fig.1 Reinforcement devices of prestressed embankment
Fig.2 Mesh of prestressed embankment with single lateral pressure plate
Fig.3 Partition map for calculating additional confining pressure
Fig.4 Numbers of surface calculating points in coverage region
Fig.5 Contour nephogram of additional horizontal stress in coverage side of LPP
Fig.6 Distribution curves of coefficient of additional confining pressure in three external regions
Fig.7 Linear propagation characteristics of peak confining pressure in three external regions
区域 θ/(o) hp0/m
1 17.9 0.126
2 55.0 0.336
3 59.8 0.725
Tab.1 Peak diffusion characterization parameters
Fig.8 Propagation diagram of additional confining pressure in different external regions
Fig.9 Comparisons between numerical and theoretical solutions for typical calculation points
类型 Fos 类型 Fos
普通路堤 1.25 下排60 kPa 1.60
无预应力 1.44 双排60 kPa 1.72
上排60 kPa 1.54 双排100 kPa 1.90
Tab.2 Safety factor of embankment under different reinforcement conditions
Fig.10 Different reinforcement conditions for embankment
Fig.11 Comparison of embankment failure modes
Fig.12 Reinforcement role of PE
Fig.13 Spacing parameters of lateral pressure plates
Fig.14 Relationship between coefficient of additional confining pressure and spacing parameters of lateral pressure plates
Fig.15 Relationship between spacing parameters of lateral pressure plates
Fig.16 Additional confining pressure of weak region with 1.2 m net spacing of lateral pressure plates
Fig.17 Particle size distribution curve of tested soil
试验条件 c /kPa φ /(°)
K=0.95,w=9.3% 45 31
K=0.95,w=6.0% 50 32
K=0.97,w=6.0% 58 33
Tab.3 Static shear strength properties of tested soil under different test conditions
Fig.18 Loading scheme in cyclic triaxial tests
试验编号 w/% σ3/kPa σd/kPa
1 9.3 15 50
2 9.3 15 100
3 9.3 15 125
4 9.3 15 150
5 9.3 15 200
6 9.3 15 250
7 9.3 30 50
8 9.3 30 100
9 9.3 30 125
10 9.3 30 150
11 9.3 30 200
12 9.3 30 250
13 9.3 60 50
14 9.3 60 100
15 9.3 60 125
16 9.3 60 150
17 9.3 60 200
18 9.3 60 250
Tab.4 Cyclic triaxial test program
Fig.19 Deviator stress-axial strain curves under different confining pressures
Fig.20 Effects of increasing confining pressure on bearing capacity or vertical failure stress
模式 试样累积变形描述
稳定型 加载50 000振次后,εa缓慢增加且不会超过5%
临界型 加载20 000振次后,εa迅速或缓慢增加,并达到15%
破坏型 加载振次未达20 000次,εa迅速增加并达到15%
Tab.5 Method for classifying accumulative plastic deformation patterns of specimens
Fig.21 Curves of accumulative axial strain and cycle number under different confining pressures
Fig.22 Dynamic shear strength under different confining pressures
Fig.23 Curves of accumulative axial plastic strain and cycle number of tested specimens
Fig.24 Relationships of cyclic stress ratio and critical dynamic stress with respect to confining pressure
[1]   杜振军 大准铁路路基病害调查及沉降变形分析[J]. 铁道建筑, 2017, 57 (9): 121- 123
DU Zhen-jun Investigation of subgrade defects in Datong-Zhunger railway and analysis of subsidence deformation[J]. Railway Engineering, 2017, 57 (9): 121- 123
[2]   王成亮, 白明洲, 杜衍庆, 等 重载铁路既有线路基病害探地雷达无损检测方法[J]. 北京交通大学学报, 2013, 37 (4): 35- 39
WANG Cheng-liang, BAI Ming-zhou, DU Yan-qing, et al Ground penetrating radar nondestructive testing ethod applied in railway subgrade of existing heavy haul railway[J]. Journal of Beijing Jiaotong University, 2013, 37 (4): 35- 39
doi: 10.3969/j.issn.1673-0291.2013.04.007
[3]   中国铁路总公司. 2013年铁路路基检测年度报告[R]. 北京: 中国铁道出版社, 2013.
[4]   冷伍明, 聂如松, 杨奇, 等 新型预应力路基结构与性能初探[J]. 铁道学报, 2016, 38 (11): 111- 119
LENG Wu-ming, NIE Ru-song, YANG Qi, et al A New type of prestressed embankment structure and its properties[J]. Journal of the China Railway Society, 2016, 38 (11): 111- 119
doi: 10.3969/j.issn.1001-8360.2016.11.016
[5]   蒋红光, 边学成, 徐翔, 等 列车移动荷载下高速铁路板式轨道路基动力性态的全比尺物理模型试验[J]. 岩土工程学报, 2014, 36 (2): 354- 362
JIANG Hong-guang, BIAN Xue-cheng, XU Xiang, et al Full-scale model tests on dynamic performances of ballastless high-speed railways under moving train loads[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (2): 354- 362
doi: 10.11779/CJGE201402013
[6]   狄宏规, 冷伍明, 薛继连, 等 朔黄铁路重载扩能的路基强度评估[J]. 铁道学报, 2014, 36 (8): 84- 90
DI Hong-gui, LENG Wu-ming, XUE Ji-lian, et al Assessment of subgrade strength for transport capacity enlargement of Shuo-Huang heavy-haul railway[J]. Journal of the China Railway Society, 2014, 36 (8): 84- 90
doi: 10.3969/j.issn.1001-8360.2014.08.19
[7]   边学成, 程翀, 王复明, 等 高速铁路路基沉降高聚物注浆修复后动力性能及长期耐久性的试验研究[J]. 岩土工程学报, 2014, 36 (3): 562- 568
BIAN Xue-cheng, CHENG Chong, WANG Fu-ming, et al Experimental study on dynamic performance and long-term durability of high-speed railway subgrade rehabilitated by polymer injection technology[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (3): 562- 568
doi: 10.11779/CJGE201403020
[8]   狄宏规, 冷伍明, 周顺华, 等 朔黄重载铁路路基斜向高压旋喷桩加固效果[J]. 同济大学学报: 自然科学版, 2013, 41 (12): 1818- 1823
DI Hong-gui, LENG Wu-ming, ZHOU Shun-hua, et al Reinforcement effect of inclined high-pressure jet grouting piles for Shuo-Huang heavy haul railway[J]. Journal of Tongji University: Natural Science, 2013, 41 (12): 1818- 1823
[9]   刘晶磊, 宋绪国, 董捷, 等 水泥土排桩加固重载铁路路基的数值分析[J]. 铁道工程学报, 2014, 31 (6): 18- 23
LIU Jing-lei, SONG Xu-guo, DONG Jie, et al Numerical analysis of reinforcing heavy haul railway subgrade by cement soil piles[J]. Journal of Railway Engineering Society, 2014, 31 (6): 18- 23
doi: 10.3969/j.issn.1006-2106.2014.06.005
[10]   ESMAEILI M, NADERI B, NEYESTANAKI H K, et al Investigating the effect of geogrid on stabilization of high railway embankments[J]. Soils and Foundations, 2018, 58 (2): 319- 332
doi: 10.1016/j.sandf.2018.02.005
[11]   邓鹏, 郭林, 蔡袁强, 等 考虑填料-土工格室相互作用的加筋路堤力学响应研究[J]. 岩石力学与工程学报, 2015, 34 (3): 621- 630
DENG Peng, GUO Lin, CAI Yuan-qiang, et al Mechanical behavior of reinforced embankment considering interaction between gravel and geocell[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (3): 621- 630
[12]   FUGGINI C, ZANGANI D, WOSNIOK A, et al Innovative approach in the use of geotextiles for failures prevention in railway embankments[J]. Transportation Research Procedia, 2016, 14: 1875- 1883
doi: 10.1016/j.trpro.2016.05.154
[13]   律文田, 王永和 秦沈客运专线路桥过渡段路基动应力测试分析[J]. 岩石力学与工程学报, 2004, 23 (3): 500- 504
LV Wen-tian, WANG Yong-he Dynamic stress analysis of subgrade-bridge transition section of Qin-Shen railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23 (3): 500- 504
doi: 10.3321/j.issn:1000-6915.2004.03.026
[14]   冷伍明, 梅慧浩, 聂如松, 等 重载铁路路基足尺模型试验研究[J]. 振动与冲击, 2018, 23 (4): 1- 6
LENG Wu-ming, MEI Hui-hao, NIE Ru-song, et al Full-scale model test of heavy haul railway subgrade[J]. Journal of Vibration and Shock, 2018, 23 (4): 1- 6
[15]   陈仁朋, 江朋, 叶肖伟, 等 高铁单线路基循环累积变形分析方法及其可靠度分析[J]. 岩石力学与工程学报, 2016, 35 (1): 141- 149
CHEN Ren-peng, JIANG Peng, YE Xiao-wei, et al Analysis approach and reliability analysis of cumulative cyclic deformation of subgrade of single high-speed railway line[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35 (1): 141- 149
[16]   国家铁路局. 铁路路基设计规范: TB 10001-2016 [S]. 北京: 中国铁道出版社, 2016.
[17]   DEUTSCHE BAHN AG. Erdauwerke planen, bauen und instand halten: Ril 836 [S]. Berlin: Deutsches Institut für Normung e. V, 2008.
[18]   XU F, YANG Q, LIU W J, et al Dynamic stress of subgrade bed layers subjected to train vehicles with large axle loads[J]. Shock and Vibration, 2018, 1- 12
[19]   国家铁路局. 重载铁路设计规范: TB 10625-2017 [S]. 北京: 中国铁道出版社, 2017.
[20]   张鲁渝, 郑颖人, 赵尚毅, 等 有限元强度折减系数法计算土坡稳定安全系数的精度研究[J]. 水利学报, 2003, 34 (1): 21- 27
ZHANG Lu-yu, ZHENG Ying-ren, ZHAO Shang-yi, et al The feasibility study of strength-reduction method with FEM for calculating safety factors of soil slope stability[J]. Journal of Hydraulic Engineering, 2003, 34 (1): 21- 27
doi: 10.3321/j.issn:0559-9350.2003.01.005
[21]   徐芝纶. 弹性力学[M]. 北京: 高等教育出版社, 1990.
[22]   李文坚. 水平预应力加固铁路路堤方法及其初步分析[D]. 长沙: 中南大学, 2015.
LI Wen-jian. Horizontal pre-stressed method on railway embankment reinforcement and its preliminary analysis [D]. Changsha: Central South University, 2015.
[23]   周平, 王志杰, 张家瑞, 等 高速铁路新型路基材料的动响应减振研究[J]. 振动与冲击, 2017, 36 (13): 230- 237
ZHOU Ping, WANG Zhi-jie, ZHANG Jia-rui, et al Vibration reduction effects of new-type roadbed material of high-speed railway[J]. Journal of Vibration and Shock, 2017, 36 (13): 230- 237
[24]   隋孝民, 陆征然 列车荷载在高速铁路路基中传递规律研究[J]. 铁道工程学报, 2012, (2): 25- 31
SUI Xiao-min, LU Zheng-ran Study on transmission laws of train load in subgrade of high-speed railway[J]. Journal of Railway Engineering Society, 2012, (2): 25- 31
doi: 10.3969/j.issn.1006-2106.2012.02.006
[25]   ANDERSEN K H, LAURITZSEN R Bearing capacity for foundations with cyclic loads[J]. Journal of Geotechnical Engineering, 1988, 104 (5): 540- 555
[1] Hui-fang WANG,Chen-yu ZHANG. Prediction of voltage stability margin in power system based on extreme gradient boosting algorithm[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 606-613.
[2] Chi QIU,Jian-kun HUANG,Yu-cun HU,Xiao-ping GUO,Yun-qing HU. Influence of irrigation on slope stability of dump in arid desert area of Northwest China: a case study of Xinxing coal mine, Wuhai[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1467-1477.
[3] Yue-han XIE,Chao-sheng TANG,Bo LIU,Qing CHENG,Li-yang YIN,Ning-jun JIANG,Bin SHI. Water stability improvement of clayey soil based on microbial induced calcite precipitation[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1438-1447.
[4] Liang LV,Hong CHEN,Xun GONG,Hai-guang ZHAO,Yun-feng HU. Cooling system modeling and coolant temperature control for gasoline engine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1119-1129.
[5] Guo-jun WANG,Hong-guo XU,Hong-fei LIU. Handling stability analysis of B-double[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 299-306.
[6] Hai-hui YUAN,Yi-min GE,Chun-biao GAN. Adaptive robust control of dynamic walking of bipedal robots under uncertain disturbances[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2049-2057.
[7] Chao-ying XIA,Gang WU,Jia-li YU. Design of modular multilevel converter control system based on uniformly asymptotically stable observer[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2238-2247.
[8] Qian-ting ZHAO,Jian-yong YAO,Zhi-kai YAO. Finite time disturbance observer based robust integral tracking control[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1874-1882.
[9] Xie-lian ZHU,Shi-lin DONG. Configuration, static and stability behavior of hyperboloidal cooling tower lattice shell composed of six-bar tetrahedral units[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1907-1915.
[10] Xu-dong ZHI,Meng-hui GUO,Chen WANG,Qi-jian WU. Mechanical properties of circular steel tube filled withfoam concrete under axial loads[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1927-1935.
[11] ZHOU Chi, LI Ying-hui, ZHENG Wu-ji, WU Peng-wei, DONG Ze-hong. Study on stability region determination and algorithm characteristics of power system[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 200-206.
[12] LIU Yun, DONG Guan-hua, YIN Guo-fu. Vibration analysis and structural optimization of non-contact seal[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(7): 1390-1397.
[13] GONG Shun-feng, WANG Xi-peng, LI Gen, LIU Cheng-bin. Influencing mechanisms of inter-layer adhesion behavior on buckle propagation of sandwich pipes[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 819-827.
[14] PENG Zhao, LAN Ji-wu, ZHAN Liang-tong, HE Hai-jie, FU Yan-ming, ZHENG Xue-juan. Application of loading berm in landfill partial slip control[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 710-718.
[15] WANG Dong-xing, WANG Hong-wei, XIAO Jie. Experimental study on water stability property of dredged sludge solidified with reactive MgO[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 719-726.