Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (5): 851-857    DOI: 10.3785/j.issn.1008-973X.2020.05.002
Civil Engineering, Traffic Engineering     
Experimental study on stress wave propagation in ultra high toughness cementitious composites
Qing-hua LI(),Cheng-lan-qing SHU
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(954KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The ultra high toughness cementitious composite (UHTCC) specimens were loaded with Hopkinson bar, and the stress wave signals in UHTCC under impact pressure of 0.2, 0.3, 0.4, 0.5 MPa were measured, in order to study the propagation characteristics of stress waves in UHTCC. The consistency of the loading waveforms under the same loading conditions was verified by comparing the incident bar waveforms. The stress wave speeds in UHTCC under different impact pressures were calculated by two methods, i.e. two point method and peak value method. Results show that the two point method is more applicable and the calculation results are relatively stable. However, the peak value method requires similar wave impedance of the incident bar and the specimen. Calculation results show that the stress wave speed and attenuation coefficient in UHTCC do not change significantly with the impact pressure, and the average wave speed is 3.060 km/s, as well as the average attenuation coefficient is 2.775 m?1. The wave speed and attenuation of stress waves in material can be expressed by parameters of Zhu-Wang-Tang constitutive model. Correspondingly, the measured wave speed and attenuation coefficient can represent the Zhu-Wang-Tang impact constitutive model of UHTCC as an equation with a single quasi-static parameter. An experimental method to determine the dynamic constitutive of UHTCC directly is provided.



Key wordsstress wave      wave speed      ultra high toughness cementitious composite (UHTCC)      attenuation      Zhu-Wang-Tang constitutive model     
Received: 22 April 2019      Published: 05 May 2020
CLC:  TU 528  
Cite this article:

Qing-hua LI,Cheng-lan-qing SHU. Experimental study on stress wave propagation in ultra high toughness cementitious composites. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 851-857.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.05.002     OR     http://www.zjujournals.com/eng/Y2020/V54/I5/851


超高韧性水泥基复合材料的波传播试验研究

为了研究超高韧性水泥基复合材料(UHTCC)中应力波的传播特性,采用Hopkinson杆加载UHTCC试件,测得UHTCC在0.2、0.3、0.4、0.5 MPa冲击气压下的应力波信号. 通过对比入射杆波形,验证相同加载条件下加载波形的一致性. 分别采用两点法和峰值法计算每种冲击气压下UHTCC中应力波的波速,结果显示,两点法适用性较广,计算结果较稳定,利用峰值法测波速则需要入射杆和试件波阻抗相近. 计算结果显示,UHTCC中应力波波速、衰减系数随冲击气压均无明显变化,平均波速为3.060 km/s,平均衰减系数为2.777 m?1. 可以利用朱-王-唐本构模型参数表达材料中应力波的波速和衰减,也可以利用实测的波速和衰减系数将UHTCC的朱-王-唐冲击本构模型表示为只含单个准静态参数的方程,从而提供通过试验直接确定UHTCC动态本构的方法.


关键词: 应力波,  波速,  超高韧性水泥基复合材料(UHTCC),  衰减,  朱-王-唐本构模型 
材料 ρB/(kg·m?3 材料 ρB/(kg·m?3
胶凝材料 1 265.0 微型钢纤维 78.0
448.0 PVA 28.7
370.3 减水剂 7.3
纳米SiO2 40.0 ? ?
Tab.1 Mix proportions of UHTCC
Fig.1 Experimental device of stress wave propagation in UHTCC
Fig.2 Comparison of measured waveforms on incident bar
Fig.3 Waveforms under different impact pressures
I/MPa ?L/mm ?t/μs C/(km·s?1) C0/(km·s?1)
0.18 300 97.8 3.067 3.074
0.20 300 102.4 2.930
0.25 300 93.0 3.226
0.30 300 102.6 2.924 3.037
0.30 300 94.8 3.165
0.30 300 102.4 2.930
0.30 300 105.6 2.841
0.33 300 90.2 3.326
0.40 300 102.2 2.935 3.076
0.40 300 86.6 3.464
0.40 300 104.4 2.874
0.40 300 99.0 3.030
0.45 300 96.4 3.112 3.062
0.50 300 97.2 3.086
0.50 225 66.2 3.399
0.50 300 105.2 2.852
0.50 300 104.8 2.863
Tab.2 Wave velocity calculation table calculated by two point method
I/MPa UI/V UR/V C2/(km·s?1
0.18 0.637 60 ?0.574 7 1.263 8
0.18 0.127 30 ?0.121 8 0.538 0
0.25 0.216 10 ?0.191 8 1.449 5
0.30 2.538 40 ?2.292 2 1.240 9
0.45 3.296 96 ?2.782 0 2.063 1
Tab.3 Wave velocity calculation results obtained by peak value method
Fig.4 Typical waveform at a point on incident bar
Fig.5 Zhu-Wang-Tang constitutive physical model
[1]   王礼立. 应力波基础[M]. 北京: 国防工业出版社, 1985.
[2]   王礼立, 胡时胜, 杨黎明, 等. 材料动力学[M]. 合肥: 中国科技大学出版社, 2017.
[3]   BACON C An experimental method for considering dispersion and attenuation in a viscoelastic Hopkinson bar[J]. Experimental Mechanics, 1998, 38 (4): 242- 249
doi: 10.1007/BF02410385
[4]   SIVIOUR C R A measurement of wave propagation in the split Hopkinson pressure bar[J]. Measurement Science and Technology, 2009, 20 (6): 1- 5
[5]   JU Y, YANG Y M, MAO Y Z, et al Laboratory investigation on mechanisms of stress wave propagations in porous media[J]. Science in China: Series E: Technological Sciences, 2009, 52 (5): 1374- 1389
doi: 10.1007/s11431-009-0128-y
[6]   胡时胜, 张磊, 武海军, 等 混凝土材料层裂强度的实验研究[J]. 工程力学, 2004, 21 (4): 128- 132
HU Shi-sheng, ZHANG Lei, WU Hai-jun, et al Experimental study on spalling strength of concrete[J]. Engineering Mechanics, 2004, 21 (4): 128- 132
doi: 10.3969/j.issn.1000-4750.2004.04.023
[7]   赖建中, 孙伟 活性粉末混凝土的层裂性能研究[J]. 工程力学, 2009, 26 (1): 137- 141
LAI Jian-zhong, SUN Wei The spalling behaviour of reactive powder concrete[J]. Engineering Mechanics, 2009, 26 (1): 137- 141
[8]   KLEPACZKO J R, BRARA A An experimental method for dynamic tensile testing of concrete by spalling[J]. International Journal of Impact Engineering, 2001, 25 (4): 387- 409
doi: 10.1016/S0734-743X(00)00050-6
[9]   王礼立, PLUVINAGE G, LABIBES K 冲击载荷下高聚物动态本构关系对黏弹性波传播特性的影响[J]. 宁波大学学报:理工版, 1995, 8 (3): 30- 57
WANG Li-li, PLUVINAGE G, LABIBES K The influence of dynamic constitutive relations of polymers at impact loading on the viscoelastic wave propagation character[J]. Journal of Ningbo University: Natural Science and Engineering Edition, 1995, 8 (3): 30- 57
[10]   FAN L F, WONG L N Y, MA G W Experimental investigation and modeling of viscoelastic behavior of concrete[J]. Construction and Building Materials, 2013, 48: 814- 821
doi: 10.1016/j.conbuildmat.2013.07.010
[11]   GEORGIN J F, REYNOUARD J M Modeling of structures subjected to impact: concrete behaviour under high strain rate[J]. Cement and Concrete Composites, 2003, 25 (1): 131- 143
doi: 10.1016/S0958-9465(01)00060-9
[12]   WANG L L, ZHOU F H, SUN Z J, et al Studies on rate-dependent macro-damage evolution of materials at high strain rates[J]. International Journal of Damage Mechanics, 2010, 19 (7): 805- 820
doi: 10.1177/1056789509359654
[13]   ZHANG H, WANG B, XIE A Y, et al Experimental study on dynamic mechanical properties and constitutive model of basalt fiber reinforced concrete[J]. Construction and Building Materials, 2017, 152: 154- 167
doi: 10.1016/j.conbuildmat.2017.06.177
[14]   胡时胜, 王道荣 冲击载荷下混凝土材料的动态本构关系[J]. 爆炸与冲击, 2002, 22 (3): 242- 246
HU Shi-sheng, WANG Dao-rong Dynamic constitutive relation of concrete under impact[J]. Explosion and Shock Waves, 2002, 22 (3): 242- 246
doi: 10.3321/j.issn:1001-1455.2002.03.009
[15]   LAI J Z, SUN W Dynamic behaviour and visco-elastic damage model of ultra-high performance cementitious composite[J]. Cement and Concrete Research, 2009, 39 (11): 1044- 1051
doi: 10.1016/j.cemconres.2009.07.012
[16]   ZHANG H, WANG L, ZHENG K, et al Research on compressive impact dynamic behavior and constitutive model of polypropylene fiber reinforced concrete[J]. Construction and Building Materials, 2018, 187: 584- 595
doi: 10.1016/j.conbuildmat.2018.07.164
[17]   XU S L, CAI X R Experimental study and theoretical models on compressive properties of ultrahigh toughness cementitious composites[J]. Journal of Materials in Civil Engineering, 2010, 22 (10): 1067- 1077
doi: 10.1061/(ASCE)MT.1943-5533.0000109
[18]   徐世烺, 李贺东 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008, 41 (6): 45- 60
XU Shi-lang, LI He-dong A review on the development of research and application of ultra high toughness cementitious composites[J]. China Civil Engineering Journal, 2008, 41 (6): 45- 60
doi: 10.3321/j.issn:1000-131X.2008.06.008
[19]   LI V C, WANG S X, WU C Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)[J]. ACI Materials Journal, 2001, 98 (6): 483- 492
[20]   CUROSU I, MECHTCHERINE V, FORNI D, et al Performance of various strain-hardening cement-based composites (SHCC) subject to uniaxial impact tensile loading[J]. Cement and Concrete Research, 2017, 102: 16- 28
doi: 10.1016/j.cemconres.2017.08.008
[21]   KANG S, KIM J The relation between fiber orientation and tensile behavior in an ultra high performance fiber reinforced cementitious composites (UHPFRCC)[J]. Cement and Concrete Research, 2011, 41 (10): 1001- 1014
doi: 10.1016/j.cemconres.2011.05.009
[22]   LI V C, WU C, WANG S X, et al Interface tailoring for strain-hardening polyvinyl alcohol engineered cementitious composite (PVA-ECC)[J]. ACI Materials Journal, 2002, 99 (5): 463- 472
[23]   徐世烺, 李贺东 超高韧性水泥基复合材料直接拉伸试验研究[J]. 土木工程学报, 2009, 42 (9): 32- 41
XU Shi-lang, LI He-dong Uniaxial tensile experiments of ultra-high toughness cementitious composite[J]. China Civil Engineering Journal, 2009, 42 (9): 32- 41
doi: 10.3321/j.issn:1000-131X.2009.09.005
[24]   WILLE K, EL-TAWIL S, NAAMAN A E Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading[J]. Cement and Concrete Composites, 2014, 48: 53- 66
doi: 10.1016/j.cemconcomp.2013.12.015
[25]   YU K Q, LI L Z, YU J T, et al Direct tensile properties of engineered cementitious composites: a review[J]. Construction and Building Materials, 2018, 165: 346- 362
doi: 10.1016/j.conbuildmat.2017.12.124
[26]   高翔. 纳米SiO2改性超高韧性水泥基复合材料试验研究[D]. 杭州: 浙江大学, 2016.
GAO Xiang. Experimental study on ultra high toughness cementitious composites with nano-SiO2 [D]. Hangzhou: Zhejiang University, 2016.
[27]   刘问. 超高韧性水泥基复合材料动态力学性能的试验研究[D]. 大连: 大连理工大学, 2012.
LIU Wen. Experimental study on dynamic mechanical properties of ultra-high toughness cementitious composites [D]. Dalian: Dalian University of Technology, 2012.
[28]   LI Q H, ZHAO X, XU S L, et al Influence of steel fiber on dynamic compressive behavior of hybrid fiber ultra high toughness cementitious composites at different strain rates[J]. Construction and Building Materials, 2016, 125: 490- 500
doi: 10.1016/j.conbuildmat.2016.08.066
[29]   王礼立, 王永刚 应力波在用SHPB研究材料动态本构特性中的重要作用[J]. 爆炸与冲击, 2005, 25 (1): 17- 25
WANG Li-li, WANG Yong-gang The important role of stress waves in the study on dynamic constitutive behavior of materials by SHPB[J]. Explosion and Shock Waves, 2005, 25 (1): 17- 25
doi: 10.3321/j.issn:1001-1455.2005.01.004
[1] Ying-jie XIA,Cong-yu OUYANG. Dynamic image background modeling method for detecting abandoned objects in highway[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1249-1255.
[2] Jin-sheng JIANG,Hao-ran REN,Han-ye LI. Seismic data processing based on convolutional autoencoder[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 978-984.
[3] Yin-fei ZHENG,Yong-gui QIN,Ji-ye AN,Wen-xin FU. Ex vivo estimation of temperature combined with pyroelectric effect and ultrasound attenuation[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 189-195.
[4] Xian-biao BU,Yun-min RAN,Ling-bao WANG,Jun-min LEI,Hua-shan LI. Analysis of key factors affecting single well geothermal heating[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 957-964.
[5] CHEN Chen, SUN Ke-xu, FENG Jian-yu, XI Jian-xiong, HE Le-nian. Low-dropout regulator with no off-chip capacitor and ultra low power consumption[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1669-1675.
[6] HUANG Bo, LI Ling, LING Dao-sheng, CHEN Xing-yao. Modes of additional attenuation of Gmax and its influence on seismic site response[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(7): 1170-1179.