Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (5): 957-964    DOI: 10.3785/j.issn.1008-973X.2019.05.017
    
Analysis of key factors affecting single well geothermal heating
Xian-biao BU1,2,3(),Yun-min RAN1,4,Ling-bao WANG1,2,3,Jun-min LEI5,Hua-shan LI1,2,3,*()
1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
2. Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China
3. Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
4. University of Chinese Academy of Sciences, Beijing 100049, China
5. Lanzhou LS Energy Equip Engineering Co. Ltd, Lanzhou 730314, China
Download: HTML     PDF(1249KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The effects of well diameter, rock thermal conductivity, well depth and geothermal gradient on produced water temperature and extraction heat power were studied based on the mathematical equations for flow heat transfer and rock energy in geothermal well. Results showed that the produced water temperature, extraction heat power and rock temperature field always reduced with time. The average extraction heat power was respectively 755.01, 660.02 and 639.42 kW for the first, tenth and twentieth heating seasons, and the above data can be used for the type selection of heat pump. The spacing of 200 m can avoid thermal disturbance among the wells with heating time of 20 years. The rock thermal conduction resistance was far greater than the fluid convection heat resistance and the well wall thermal conduction resistance, so reducing rock thermal conduction resistance was the most effective method for increasing extraction heat power. The rock thermal conduction resistance can be reduced by increasing the well diameter and the rock thermal conductivity. The extraction heat power can increase 100 kW with the increase of rock thermal conductivity of 0.5 W/(m·K). The temperature difference between liquid and rock can be raised by increasing geothermal gradient and well depth, and thus leading to the increase in extraction heat power. The extraction heat power can increase 213.54 kW with the increase of geothermal gradient of 10 K/km.



Key wordssingle well      geothermal heating      heat attenuation      geothermal gradient      rock thermal resistance     
Received: 18 April 2018      Published: 17 May 2019
CLC:  TK 52  
Corresponding Authors: Hua-shan LI     E-mail: buxb@ms.giec.ac.cn;lihs@ms.giec.ac.cn
Cite this article:

Xian-biao BU,Yun-min RAN,Ling-bao WANG,Jun-min LEI,Hua-shan LI. Analysis of key factors affecting single well geothermal heating. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 957-964.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.05.017     OR     http://www.zjujournals.com/eng/Y2019/V53/I5/957


单井地热供暖关键因素分析

基于地热井内流体的流动换热方程以及岩石的能量方程,研究井直径、岩石导热系数、井深和地温梯度对采出水温度和采热功率的影响. 结果表明:单井采出水温度、采热功率和岩石温度场均随时间衰减,第1、10、20个供暖季对应的平均采热功率分别为755.01、660.02、639.42 kW,上述数据可用于热泵选型. 对于20 a的供暖期,当两井间距为200 m时不会产生热干扰;岩石导热热阻远大于井内对流热阻和井壁导热热阻,降低岩石的导热热阻是提高采热功率的最有效手段;增加井直径和岩石导热系数可以降低岩石导热热阻;岩石导热系数每增加0.5 W/(m·K),采热功率增加100 kW;增加地温梯度和井深可以增大岩石和流体之间的传热温差,提高采热功率;地温梯度每增加10 K/km,采热功率增加213.54 kW.


关键词: 单井,  地热供暖,  热量衰减,  地温梯度,  岩石热阻 
Fig.1 Schematic of heat exchange in single well
Fig.2 Variation of produced water temperature and extraction heat power with time at first heating season
Fig.3 Variation of average produced water temperature and extraction heat power with time
Fig.4 Rock temperature at end of first heating season
Fig.5 Water temperature variation in injection well with well depth at end of first heating season
井类型 Rh/10?4 Rs/10?4 Rr/10?1
S 8.16 7.90 2.72
M 6.86 7.14 2.61
B 6.30 7.41 2.56
Tab.1 Thermal resistance for rock, well wall and fluid                 m·K·W−1
Fig.6 Rock temperature filed at beginning of twentieth heating season
Fig.7 Rock temperature field at end of twentieth heating season
Fig.8 Effect of well diameter on produced water temperature and extraction heat power
Fig.9 Effect of thermal conductivity of rock on produced water temperature and extraction heat power
Fig.10 Effect of well depth on produced water temperature and extraction heat power
Fig.11 Effect of geothermal gradient on produced water temperature and extraction heat power
[1]   李克文, 王磊, 毛小平, 等 油田伴生地热资源评价与高效开发[J]. 科技导报, 2012, 30 (32): 32- 41
LI Ke-wen, WANG Lei, MAO Xiao-ping, et al Evaluation and efficient development of geothermal resource associated with oilfield[J]. Science and Technology Review, 2012, 30 (32): 32- 41
doi: 10.3981/j.issn.1000-7857.2012.32.003
[2]   TEMPLETON J D, GHOREISHI-MADISEH S A, HASSANI F, et al Abandoned petroleum wells as sustainable sources of geothermal energy[J]. Energy, 2014, 70: 366- 373
doi: 10.1016/j.energy.2014.04.006
[3]   CHENG W L, LI T T, NIAN Y L An Analysis of insulation of abandoned oil wells reused for geothermal power generation[J]. Energy Procedia, 2014, 61: 607- 610
doi: 10.1016/j.egypro.2014.11.1181
[4]   CHENG W L, LI T T, NIAN Y L, et al Evaluation of working fluids for geothermal power generation from abandoned oil wells[J]. Applied Energy, 2014, 118: 238- 245
doi: 10.1016/j.apenergy.2013.12.039
[5]   CHENG W L, LI T T, NIAN Y L, et al Studies on geothermal power generation using abandoned oil wells[J]. Energy, 2013, 59: 248- 254
doi: 10.1016/j.energy.2013.07.008
[6]   CHENG W L, LIU J, NIAN Y L Enhancing geothermal power generation from abandoned oil wells with thermal reservoirs[J]. Energy, 2016, 109: 537- 545
doi: 10.1016/j.energy.2016.05.009
[7]   R?KSLAND M, BASMOEN T A, SUI D Geothermal energy extraction from abandoned wells[J]. Energy Procedia, 2017, 105: 244- 249
doi: 10.1016/j.egypro.2017.03.309
[8]   WIGHT N M, BENNETT N S Geothermal energy from abandoned oil and gas wells using water in combination with a closed wellbore[J]. Applied Thermal Engineering, 2015, 89: 908- 915
doi: 10.1016/j.applthermaleng.2015.06.030
[9]   CUI G D, REN S R, ZHANG L, et al Geothermal exploitation from hot dry rocks via recycling heat transmission fluid in a horizontal well[J]. Energy, 2017, 128: 366- 377
doi: 10.1016/j.energy.2017.04.027
[10]   DAVIS A P, MICHAELIDES E E Geothermal power production from abandoned oil wells[J]. Energy, 2009, 34: 866- 872
doi: 10.1016/j.energy.2009.03.017
[11]   NOOROLLAHI Y, POURARSHAD M, JALILINASRABADY S, et al Numerical simulation of power production from abandoned oil wells in Ahwaz oil field in southern Iran[J]. Geothermics, 2015, 55: 16- 23
doi: 10.1016/j.geothermics.2015.01.008
[12]   CAULK R A, TOMAC I Reuse of abandoned oil and gas wells for geothermal energy production[J]. Renewable Energy, 2017, 112: 388- 397
doi: 10.1016/j.renene.2017.05.042
[13]   ALIMONTI C, SOLDO E Study of geothermal power generation from a very deep oil well with a wellbore heat exchanger[J]. Renewable Energy, 2016, 86: 292- 301
doi: 10.1016/j.renene.2015.08.031
[14]   孔彦龙, 陈超凡, 邵亥冰, 等 深井换热技术原理及其换热量评估[J]. 地球物理学报, 2017, 60 (12): 4741- 4752
KONG Yan-long, CHEN Chao-fan, SHAO Hai-bing, et al Principle and capacity quantification of deep-borehole heat exchangers[J]. Chinese Journal of Geophysics, 2017, 60 (12): 4741- 4752
doi: 10.6038/cjg20171216
[15]   KUJAMA T, NOWAK W, STACHEL A A Utilization of existing deep geological wells for acquisitions of geothermal energy[J]. Energy, 2006, 31 (5): 650- 664
doi: 10.1016/j.energy.2005.05.002
[16]   韦雅珍, 王凤清, 任宝玉. 华北油区地热排采技术研究[J]. 石油钻采工艺, 2009, 31(增1): 93–95.
WEI Ya-zhen, WANG Feng-qing, REN Bbao-yu. Drainage and production by using geothermal in Huabei oil region[J]. Oil Drilling and Production Technology, 2009, 31(Suppl. 1): 93–95.
[17]   刘俊, 张旭, 高君, 等 地源热泵桩基埋管传热性能测试与数值模拟研究[J]. 太阳能学报, 2009, 30 (6): 727- 731
LIU Jun, ZHANG Xu, GAO Jun, et al Heat transfer performance text and numerical simulation of pile-pipe ground source heat pump system[J]. Acta Energiae Solaris Sinica, 2009, 30 (6): 727- 731
doi: 10.3321/j.issn:0254-0096.2009.06.003
[18]   李旻, 刁乃仁, 方肇洪 单井回灌地源热泵地下传热数值模型研究[J]. 太阳能学报, 2007, 28 (12): 1394- 1401
LI Min, DIAO Nai-ren, FANG Zhao-hong Study on numerical heat transfer models of standing column well[J]. Acta Energiae Solaris Sinica, 2007, 28 (12): 1394- 1401
doi: 10.3321/j.issn:0254-0096.2007.12.020
[19]   卜宪标, 谭羽非, 李炳熙, 等 盐穴地下储油库热质交换及蠕变[J]. 西安交通大学学报, 2009, 43 (11): 104- 108
BU Xian-biao, TAN Yu-fei, LI Bing-xi, et al Heat and mass transfer and creep in underground oil storage with cavern[J]. Journal of Xi’an Jiao Tong University, 2009, 43 (11): 104- 108
doi: 10.3321/j.issn:0253-987X.2009.11.022
[20]   HASAN A R, KABIR C S Modeling two-phase fluid and heat flows in geothermal wells[J]. Journal of Petroleum Science and Engineering, 2010, 71 (1): 77- 86
[21]   章熙民, 任泽霈, 梅飞鸣. 传热学[M]. 4版. 北京: 中国建筑工业出版社, 2001: 146-158.
[1] ZHANG Lin lin, ZHAO Lei, YANG Liu. Soil temperature response and recovery characteristics of intermittent heat emission in multi boreholes[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 299-305.
[2] ZHANG Chang-xing, HU Song-tao , LIU Yu-feng, CONG Xiao-chun. Determination method for  rock-soil thermal properties
based on system optimization
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(12): 2237-2242.