Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (3): 606-613    DOI: 10.3785/j.issn.1008-973X.2020.03.022
Electrical Engineering     
Prediction of voltage stability margin in power system based on extreme gradient boosting algorithm
Hui-fang WANG*(),Chen-yu ZHANG
Department of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(773KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The extreme gradient boosting (XGBoost) algorithm was applied in power system voltage stability assessment problem. According to the characteristics of the voltage stability problem, a feature set which could reflect the state of a power system was defined. Taking the absolute value of voltage stability margin as the mapping target, the method to generate the sample set was studied. Based on the introduction of the basic principle of the XGBoost algorithm, the technical details of the algorithm were discussed. The algorithm was evaluated in the IEEE-39 power system. Results show that the XGBoost algorithm has better performance than other machine learning models according to two evaluation metrics: R squared value and mean absolute percentage error value, and has the fastest computation speed, which can meet the demand of online application. Meanwhile, the XGBoost algorithm is proved to be robust when the data errors and data missing happen. And data supplement can be taken for the samples with large prediction deviation to update the model, thus making the performance of the model more stable.



Key wordspower system      voltage stability      machine learning      artificial intelligence      extreme gradient boosting (XGBoost) algorithm     
Received: 03 March 2019      Published: 05 March 2020
CLC:  TM 744  
Corresponding Authors: Hui-fang WANG     E-mail: huifangwang@zju.edu.cn
Cite this article:

Hui-fang WANG,Chen-yu ZHANG. Prediction of voltage stability margin in power system based on extreme gradient boosting algorithm. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 606-613.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.03.022     OR     http://www.zjujournals.com/eng/Y2020/V54/I3/606


采用极限梯度提升算法的电力系统电压稳定裕度预测

将极限梯度提升树(XGBoost)算法应用于电力系统电压稳定评估问题. 根据电压稳定问题特点,提出能够反映电力系统运行状态的特征集;把电压稳定裕度绝对值作为映射目标,并介绍生成样本集的方法. 在介绍XGBoost算法基本原理的基础上,研究该算法的技术细节. 在IEEE-39节点系统上进行验证,结果表明,XGBoost算法在R方值和平均绝对百分误差2项回归指标上均优于其他几类机器学习算法,且模型的计算速度最快,可以满足在线应用要求. 同时,XGBoost算法具有良好的数值错误和数值缺失容错性,并可以针对预测偏差较大的样本进行数据补充,实现模型的更新,使得模型表现趋于稳定.


关键词: 电力系统,  电压稳定性,  机器学习,  人工智能,  极限梯度提升树(XGBoost)算法 
Fig.1 Voltage stability margin
特征符号 特征含义
V iθ i 节点i 的电压幅值、相角
PGiQGi 发电机节点i 的有功、无功出力
PLiQLi 负荷节点i 的有功、无功负荷需求
PBijQBij 线路ij传输的有功、无功功率
Tab.1 Steady state features for the power system
Fig.2 Diagram of IEEE-39 power system
模型 R2 MAPE
KNNRegressor 0.946 4.869
SVR 0.961 4.152
RF 0.977 2.960
GBRT 0.987 2.140
XGBoost 0.992 1.621
Tab.2 Comparison of prediction performance of different machine learning models
Fig.3 Prediction results of different machine learning algorithms
模型 Tt /s Tp /s
KNNRegressor 0.022 0 0.480 6
SVR 1.753 2 0.405 5
RF 9.060 5 0.006 0
GBRT 7.285 5 0.003 2
XGBoost 4.609 0 0.000 1
Tab.3 Comparison of training time and predicting time of different models
误差范围 R2 MAPE 误差范围 R2 MAPE
5% 0.972 3.096 1% 0.988 2.002
2% 0.980 2.478 0.5% 0.991 1.789
Tab.4 Prediction performance of XGBoost model with value errors existing in samples
缺失比例 R2 MAPE
1% 0.987 1.905
2% 0.976 2.356
Tab.5 Prediction performance of XGBoost model with some values of samples missed
Fig.4 Real value and prediction error of fifty samples with largest errors in test set
XGBoost模型 样本集 $\emptyset $ 测试集
MAE MRE% R2 MAPE
更新前 219 4.460 0.992 1.621
更新后 2.49 0.017 0.996 1.313
Tab.6 The prediction performance before and after the updating of XGBoost model
[1]   王锡凡. 现代电力系统分析[M]. 北京: 科学出版社, 2003.
[2]   RODRIGUES A B, PRADA R B, SILVA M D G D Voltage stability probabilistic assessment in composite systems: modeling unsolvability and controllability loss[J]. IEEE Transactions on Power Systems, 2010, 25 (3): 1575- 1588
doi: 10.1109/TPWRS.2009.2039234
[3]   AJJARAPU V, CHRISTY C The continuation power flow: a tool for steady state voltage stability analysis[J]. IEEE Transactions on Power Systems, 1992, 7 (1): 416- 423
doi: 10.1109/59.141737
[4]   杨滢, 叶琳, 倪秋龙 基于PSS/E的浙江电网静态电压稳定性分析[J]. 浙江电力, 2009, 28 (6): 9- 11
YANG Ying, YE Lin, NI Qiu-long Analysis of static voltage stability of Zhejiang electric grid based on PSS/E[J]. Zhejiang Electric Power, 2009, 28 (6): 9- 11
doi: 10.3969/j.issn.1007-1881.2009.06.003
[5]   吴杰康, 邓松, 梁志武, 等 基于模糊神经网络决策树的电压稳定性评估[J]. 电网技术, 2007, 32 (14): 25- 30
WU Jie-kang, DENG Song, LIANG Zhi-wu, et al Evaluation of power system voltage stability based on fuzzy neural network decision tree[J]. Power System Technology, 2007, 32 (14): 25- 30
[6]   王皓, 孙宏斌, 张伯明 基于混合互信息的特征选择方法及其在静态电压稳定评估中的应用[J]. 中国电机工程学报, 2006, 26 (7): 77- 81
WANG Hao, SUN Hong-bin, ZHANG Bo-ming Hybrid mutual information based feature selection method as appied to static voltage stability assessment in power systems[J]. Proceedings of the CSEE, 2006, 26 (7): 77- 81
doi: 10.3321/j.issn:0258-8013.2006.07.015
[7]   FAN Y, LIU S, QIN L, et al A novel online estimation scheme for static voltage stability margin based on relationships exploration in a large data set[J]. IEEE Transactions on Power Systems, 2015, 30 (3): 1380- 1393
doi: 10.1109/TPWRS.2014.2349531
[8]   DEVARAJ D, ROSELYN J P On-line voltage stability assessment using radial basis function network model with reduced input features[J]. International Journal of Electrical Power and Energy Systems, 2011, 33 (9): 1550- 1555
[9]   崔峰, 齐占庆, 姜萌 基于模糊神经网络的电力系统电压稳定评估[J]. 电力系统保护与控制, 2009, 37 (11): 40- 44
CUI Feng, QI Zhan-qing, JIANG Meng Fuzzy neural network based voltage stability evaluation of power systems[J]. Power System Protection and Control, 2009, 37 (11): 40- 44
doi: 10.3969/j.issn.1674-3415.2009.11.010
[10]   刘昇, 徐政, 华文 用于在线预测静态电压稳定性的SIPSS-Lasso-BP网络[J]. 中国电机工程学报, 2014, (34): 6032- 6041
LIU Sheng, XU Zheng, HUA Wen A SIPSS-Lasso-BP network for online forecasting static voltage stability[J]. Proceedings of the CSEE, 2014, (34): 6032- 6041
[11]   ZHOU D Q, ANNAKKAGE U D, RAJAPAKSE A D Online monitoring of voltage stability margin using an artificial neural network[J]. IEEE Transactions on Power Systems, 2010, 25 (3): 1566- 1574
doi: 10.1109/TPWRS.2009.2038059
[12]   FAN Y, LI X, ZHANG P Real-time static voltage stability assessment in large-scale power systems based on maximum-relevance minimum-redundancy ensemble approach[J]. IEEE Access, 2017, 5: 27281- 27291
doi: 10.1109/ACCESS.2017.2758819
[13]   MALBASA V, ZHENG C, CHEN P C, et al Voltage stability prediction using active machine learning[J]. IEEE Transactions on Smart Grid, 2017, 8 (6): 3117- 3124
doi: 10.1109/TSG.2017.2693394
[14]   CHEN T, GUESTRIN C. XGBoost: a scalable tree boosting system [C] // Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining: SIGKDD. San Francisco: ACM, 2016: 785-794.
[15]   WANG H, ZHANG C, LIN D et al An artificial intelligence-based method for evaluating power grid node importance using network embedding and support vector regression[J]. Frontiers of Information Technology and Electronic Engineering, 2019, 20 (6): 816- 828
doi: 10.1631/FITEE.1800146
[16]   ZIMMERMAN, R D, MURILLO-SANCHEZ, C. E., THOMAS, R. J Matpower: steady-state operations, planning, and analysis tools for power systems research and education[J]. IEEE Transactions on Power Systems, 2011, 26 (1): 12- 19
doi: 10.1109/TPWRS.2010.2051168
[17]   PEDREGOSA F, GRAMFORT A, MICHEL V, et al Scikit-learn: machine learning in python[J]. Journal of Machine Learning Research, 2016, 12 (10): 2825- 2830
[1] You ZHAN,Qiang LI,Xiao-tian MA,Chen-ping WANG,Yan-jun QIU. Macro and micro texture based prediction of pavement surface friction[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 684-694.
[2] Yong YU,Jing-yuan XUE,Sheng DAI,Qiang-wei BAO,Gang ZHAO. Quality prediction and process parameter optimization method for machining parts[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 441-447.
[3] Qiao-hong CHEN,YI CHEN,Wen-shu Li,Yu-bo JIA. Clothing image classification based on multi-scale SE-Xception[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1727-1735.
[4] Zhuang KANG,Jie YANG,Hao-qi GUO. Automatic garbage classification system based on machine vision[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1272-1280.
[5] Zhong YUN,Meng WEN,Zi-rong LUO,Long CHEN. Design and plunge-diving analysis of underwater-aerial transmedia vehicle of bionic kingfisher[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 407-415.
[6] Le XIE,Xi-dan HENG,Yang LIU,Qi-long JIANG,Dong LIU. Transformer fault diagnosis based on linear discriminant analysis and step-by-step machine learning[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2266-2272.
[7] Zhi-yuan WAN,Jia-heng TAO,Jia-kun LIANG,Zhen-gong CAI,Cheng CHANG,Lin QIAO,Qiao-ni ZHOU. Large-scale empirical study on machine learning related questions on Stack Overflow[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 819-828.
[8] Dong-xiang KE,Li-min PAN,Sen-lin LUO,Han-qing ZHANG. Android malicious behavior recognition and classification method based on random forest algorithm[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 2013-2023.
[9] HU Li-sha, WANG Su-zhen, CHEN Yi-qiang, GAO Chen-long, HU Chun-yu, JIANG Xin-long, CHEN Zhen-yu, GAO Xing-yu. Fall detection algorithms based on wearable device: a review[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1717-1728.
[10] WANG Hong-kai, CHEN Zhong-hua, ZHOU Zong-wei, LI Ying-ci, LU Pei-ou, WANG Wen-zhi, LIU Wan-yu, YU Li-juan. Evaluation of machine learning classifiers for diagnosing mediastinal lymph node metastasis of lung cancer from PET/CT images[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 788-797.
[11] WU Peng-zhou, YU Hui-min, ZENG Xiong. Object counting based on regularized risk minimization[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(7): 1226-1233.
[12] WANG Guan-nan, SUN Li-ying,GAN De-qiang,WANG Bin-bin,XIN Huan-hai. Generalized phase compensation method for power system stabilizer design[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(7): 1295-1303.
[13] ZHAO Wei,HUANG Yu-zhao,YU Zhe-qing,RUAN Jian. Hydraulic power system of high speed ejection experiment device[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(5): 799-804.
[14] LV Wen-tao,SHEN Chen,JIANG Dao-zhuo,GUI Fan,FAN Yu,WU Zhao-lin. UPFC with fault current limiting and capacitor voltage limiting[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(5): 877-881.
[15] ZHANG Xing-you, WANG Shou-xiang. Risk assessment of distribution power systems considering communication systems[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(4): 568-574.