Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (8): 1438-1447    DOI: 10.3785/j.issn.1008-973X.2019.08.002
Civil and Structural Engineering     
Water stability improvement of clayey soil based on microbial induced calcite precipitation
Yue-han XIE1(),Chao-sheng TANG1,2,*(),Bo LIU1,Qing CHENG1,Li-yang YIN1,Ning-jun JIANG2,3,Bin SHI1
1. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
2. Nanjing University (Suzhou) High-tech Institute, Suzhou 215123, China
3. Department of Civil and Environmental Engineering, University of Hawaii, Honolulu 96822, America
Download: HTML     PDF(1193KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Microbial induced calcium carbonate precipitation (MICP) technology was adopted to improve the water stability and the erosion resistance of clayey soil. The prepared microbial solution and the cementation solution were sprayed to the surface of clayey soil by a spraying method for MICP treatment. A series of disintegration tests were carried out, and the digital picture processing technique was used to quantitatively analyze and evaluate the disintegration process. The grain size test was used to determine the change of particle size composition before and after MICP treatment, and the microstructure of the soil samples was further analyzed by the scanning electron microscope (SEM). Results showed that compared with the rapid disintegration of the raw soil after being immersed in water, the MICP treated soil sample can maintain its original structure in the same time, and the water stability is stronger. The slaking index (SI) is a quantitative indicator of describing the process of soil slaking and evaluating the water stability. The disintegration rate of the MICP treated soil was far lower than that of the raw soil, and the final SI of the MICP treated soil was only half of that of the raw soil. The MICP treatment can significantly change the particle size composition of the soil sample, i.e. the mass fraction of fine particles was reduced and the mass fraction of coarse particles was increased. Calcium carbonate precipitated by microorganisms, fills large pores of the soil, and the effective cementation between the soil particles greatly improves the strength of the connection between the soil particles, which is the main mechanism for MICP to improve the soil water stability.



Key wordsmicrobial induced calcium carbonate precipitation (MICP)      bio-cementation      clayey soil      water stability      microstructure      soil erosion     
Received: 12 February 2019      Published: 13 August 2019
CLC:  TU 443  
Corresponding Authors: Chao-sheng TANG     E-mail: xieyuehan@smail.nju.edu.cn;tangchaosheng@nju.edu.cn
Cite this article:

Yue-han XIE,Chao-sheng TANG,Bo LIU,Qing CHENG,Li-yang YIN,Ning-jun JIANG,Bin SHI. Water stability improvement of clayey soil based on microbial induced calcite precipitation. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1438-1447.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.08.002     OR     http://www.zjujournals.com/eng/Y2019/V53/I8/1438


基于微生物诱导碳酸钙沉积技术的黏性土水稳性改良

采用微生物诱导碳酸钙沉积(MICP)技术对黏性土进行改性处理,以改善其水稳性与抗侵蚀能力. 利用喷洒法将配制的微生物菌液及胶结液先后喷洒至黏性土表层进行MICP处理,并开展一系列崩解试验,通过数字图像处理技术对土样的崩解过程进行定量分析和评价. 通过颗粒分析试验研究MICP改性前后土样粒度组分的变化,通过扫描电子显微镜(SEM)分析土样的微观结构特征. 结果表明:1)素土在浸水后发生快速崩解,而在相同的时间内MICP改性土样则能较好地保持原始结构,水稳性更强;2)崩解指数是描述土体崩解过程和评价土体水稳性的定量指标. MICP改性土样的崩解速率远低于素土,且最终稳定后的崩解指数仅为素土的50%;3)MICP改性能显著改变土样的粒度组分,具体表现为细颗粒质量分数减少,粗粒土质量分数增加;4)微生物诱导所产生的碳酸钙填充了土样中的大孔隙,并在土颗粒之间形成有效的胶结,极大提高土颗粒之间的联接强度,这是MICP技术提高土体水稳性的主要作用机制.


关键词: 微生物诱导碳酸钙沉积(MICP),  微生物固化,  黏性土,  水稳性,  微观结构,  水土流失 
参数 数值
比重Gs 2.73
塑限ωP/% 19.5
液限ωL/% 36.5
塑性指数IP 17.0
最大干密度ρd/(g·cm?3 1.71
最优的水的质量分数ωopt/% 15.7
Tab.1 Basic physical properties of soil samples
Fig.1 Pictures of soil samples at different treatment stages
Fig.2 Quantitative analysis process of soil slaking image based on CIAS
Fig.3 Slaking process of two soil samples at different times
Fig.4 Microscope images of slaking process of raw soil and MICP treated soil
Fig.5 Schematic diagram of clayey soil slaking process
Fig.6 Change of slaking indexes of raw and MICP treated soil samples with time
Fig.7 Particle size distribution curves of raw and MICP treated soil samples after slaking
Fig.8 Microstructure image of surface layer of MICP treated soil sample
Fig.9 Microstructure images of raw and MICP treated soil samples at depth of 10 mm
[1]   雷廷武. 坡面土壤侵蚀动力过程与化学调控技术[M]. 北京: 科学出版社, 2010: 5-6.
[2]   田卫堂, 胡维银, 李军, 等 我国水土流失现状和防治对策分析[J]. 水土保持研究, 2008, 15 (4): 204- 209
TIAN Wei-tang, HU Wei-yin, LI Jun, et al The status of soil and water loss and analysis of countermeasures in china[J]. Research of Soil and Water Conservation, 2008, 15 (4): 204- 209
[3]   陈晓清, 崔鹏, 冯自立, 等 滑坡转化泥石流起动的人工降雨试验研究[J]. 岩石力学与工程学报, 2006, 25 (1): 106- 116
CHEN Xiao-qing, CUI Peng, FENG Zi-li, et al Artificial rainfall experimental study on landslide translation to debris flow[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25 (1): 106- 116
doi: 10.3321/j.issn:1000-6915.2006.01.018
[4]   于健, 雷廷武, ISAAC Shainberg, et al PAM特性对砂壤土入渗及土壤侵蚀的影响[J]. 土壤学报, 2011, 48 (1): 21- 27
YU Jian, LEI Ting-wu, ISAAC Shainberg, et al Effect of molecular weight and degree of hydrolysis of PAM on infiltration and erosion of sandy soil[J]. Acta Pedologica Sinica, 2011, 48 (1): 21- 27
doi: 10.11766/trxb200910220472
[5]   李元元, 王占礼 聚丙烯酰胺(PAM)防治土壤风蚀的研究进展[J]. 应用生态学报, 2016, 27 (3): 1002- 1008
LI Yuan-yuan, WANG Zhan-li Research progress on wind erosion control with polyacrylamide (PAM)[J]. Chinese Journal of Applied Ecology, 2016, 27 (3): 1002- 1008
[6]   裴向军, 杨晴雯, 许强, 等 改性钠羧甲基纤维素胶结固化土质边坡机制与抗冲蚀特性研究[J]. 岩石力学与工程学报, 2016, 35 (11): 2316- 2327
PEI Xiang-jun, YANG Qing-wen, XU Qiang, et al Research on glue reinforcement mechanism and scouring resistant properties of soil slopes by modified carboxymethyl cellulose[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35 (11): 2316- 2327
[7]   钟冰, 唐治诚 三峡库区水土流失及其防治[J]. 水土保持研究, 2001, 8 (2): 147- 149
ZHONG Bing, TANG Zhi-cheng Soil and water loss and its control in three gorges region[J]. Research of Soil and Water Conservation, 2001, 8 (2): 147- 149
doi: 10.3969/j.issn.1005-3409.2001.02.037
[8]   王冬梅, 张文艳, 苏新琴 城市水土流失及其防治对策[J]. 城市发展研究, 2001, (5): 49- 53
WANG Dong-mei, ZHANG Wen-yan, SU Xin-qin Counter-measures of soil and water losses in urban area[J]. Urban Studies, 2001, (5): 49- 53
doi: 10.3969/j.issn.1006-3862.2001.05.010
[9]   DEJON J T, SOGA K, KAVAZANJIAN E, et al Biogeochemical processes and geotechnical applications: progress, opportunities and challenges[J]. Geotechnique, 2013, 63 (4): 287- 301
doi: 10.1680/geot.SIP13.P.017
[10]   何稼, 楚剑, 刘汉龙, 等 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38 (4): 643- 653
HE Jia, CHU Jian, LIU Han-long, et al Research advances in biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38 (4): 643- 653
doi: 10.11779/CJGE201604008
[11]   TENG H H, DOVE P M, ORME C A, et al Thermodynamics of calcite growth: baseline for understanding biomineral formation[J]. Science, 1998, 282 (5389): 724- 727
doi: 10.1126/science.282.5389.724
[12]   DAVIS K J, DOVE P M, YOREO J J D The role of Mg2+ as an impurity in calcite growth [J]. Science, 2000, 290 (5494): 1134- 1137
doi: 10.1126/science.290.5494.1134
[13]   WEI S, CUI H, JIANG Z, et al Biomineralization processes of calcite induced by bacteria isolated from marine sediments[J]. Brazilian Journal of Microbiology, 2015, 46 (2): 455
doi: 10.1590/S1517-838246220140533
[14]   CARDOSO R, MONTEIRO A, FLORES-COLEN I, et al. Use of biocementation for cracks rehabilitation of different construction materials [C]// 3rd International Conference on Protection of Historical Constructions (PROHITECH'17). Lisbon: [s.n.], 2017.
[15]   MARTINEZ B C, DEJONG J T, GINN J, et al Experimental optimization of microbial-induced carbonate precipitation for soil improvement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139 (4): 587- 598
doi: 10.1061/(ASCE)GT.1943-5606.0000787
[16]   方祥位, 申春妮, 楚剑, 等 微生物沉积碳酸钙固化珊瑚砂的试验研究[J]. 岩土力学, 2015, 36 (10): 2773- 2779
FANG Xiang-wei, SHEN Chun-ni, CHU Jian, et al An experimental study of coral sand enhanced through microbially-induced precipitation of calcium carbonate[J]. Rock and Soil Mechanics, 2015, 36 (10): 2773- 2779
[17]   DEJONGJ T, FRITZGES M B, NU?SSLEIN K Microbially induced cementation to control sand response to undrained shear[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132 (11): 1381- 1392
doi: 10.1061/(ASCE)1090-0241(2006)132:11(1381)
[18]   WHIFFIN V S, PAASSEN L A V, HARKES M P Microbial carbonate precipitation as a soil improvement technique[J]. Geomicrobiology Journal, 2007, 24 (5): 417- 423
doi: 10.1080/01490450701436505
[19]   QABANY A A, SOGA K Effect of chemical treatment used in MICP on engineering properties of cemented soils[J]. Geotechnique, 2013, 63 (4): 331- 339
doi: 10.1680/geot.SIP13.P.022
[20]   FENG K, MONTOYA B M Behavior of bio-mediated soil in k0 loading[J]. Geotechnical Special Publication, 2014, (243): 1- 10
[21]   FENG K, MONTOYA B M Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142 (1): 04015057
doi: 10.1061/(ASCE)GT.1943-5606.0001379
[22]   张帅, 程晓辉 微生物诱导碳酸钙结晶技术处理可液化砂土地基试验研究及数值模拟[J]. 工业建筑, 2015, (7): 23- 27
ZHANG Shuai, CHENG Xiao-hui Numerical simulation and experimental research on stabilization of liquefiable sand foundation by MICP[J]. Industrial Construction, 2015, (7): 23- 27
[23]   CHU J, IVANOV V, STABNIKOV V, et al Microbial method for construction of aquaculture pond in sand[J]. Geotechnique, 2013, 63 (10): 871- 875
doi: 10.1680/geot.SIP13.P.007
[24]   钱春香, 罗勉, 潘庆峰, 等 自修复混凝土中微生物矿化方解石的形成机制[J]. 硅酸盐学报, 2013, 5 (5): 620- 626
QIAN Chun-xiang, LUO Mian, PAN Qing-feng, et al Mechanism of microbially induced calcite precipitation in self-healing concrete[J]. Journal of the Chinese Ceramic Society, 2013, 5 (5): 620- 626
[25]   钱春香, 王安辉, 王欣 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36 (6): 1537- 1548
QIAN Chun-xiang, WANG An-hui, WANG Xin Advances of soil improvement with bio-grouting[J]. Rock and Soil Mechanics, 2015, 36 (6): 1537- 1548
[26]   刘璐, 沈扬, 刘汉龙, 等 微生物胶结在防治堤坝破坏中的应用研究[J]. 岩土力学, 2016, 37 (12): 3410- 3416
LIU Lu, SHEN Yang, LIU Han-long, et al Application of bio-cement in erosion control of levees[J]. Rock and Soil Mechanics, 2016, 37 (12): 3410- 3416
[27]   刘汉龙, 肖鹏, 肖杨, 等 MICP胶结钙质砂动力特性试验研究[J]. 岩土工程学报, 2018, 40 (1): 38- 45
LIU Han-long, XIAO Peng, XIAO Yang, et al Dynamic behaviors of MICP-treated calcareous sand in cyclic tests[J]. Chinese Journal of Geotechnical Engineering, 2018, 40 (1): 38- 45
doi: 10.11779/CJGE201801002
[28]   JIANG N J, YOSHIOKA H, YAMAMOTO K, et al Ureolytic activities of a urease-producing bacterium and purified urease enzyme in the anoxic condition: implication for subsea floor sand production control by microbially induced carbonate precipitation (MICP)[J]. Ecological Engineering, 2016, 90: 96- 104
doi: 10.1016/j.ecoleng.2016.01.073
[29]   JIANG N J, SOGA K The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel-sand mixtures[J]. Géotechnique, 2016, 67 (1): 42- 55
[30]   CHENG L, CORD-RUWISCH R In situ soil cementation with ureolytic bacteria by surface percolation[J]. Ecological Engineering, 2012, 42: 64- 72
[31]   崔明娟, 郑俊杰, 赖汉江 菌液注射方式对微生物固化砂土动力特性影响试验研究[J]. 岩土力学, 2017, 38 (11): 3173- 3178
CUI Ming-juan, ZHENG Jun-jie, LAI Han-jiang Effect of method of biological injection on dynamic behavior for bio-cemented sand[J]. Rock and Soil Mechanics, 2017, 38 (11): 3173- 3178
[32]   STOCKS-FISCHER S, GALINAT J K, BANG S S Microbiological precipitation of CaCO3[J]. Soil Biology and Biochemistry, 1999, 31 (11): 1563- 1571
doi: 10.1016/S0038-0717(99)00082-6
[33]   MITCHELL J K, SANTAMARINA J C Biological considerations in geotechnical engineering[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131 (10): 1222- 1233
doi: 10.1061/(ASCE)1090-0241(2005)131:10(1222)
[34]   PHADNIS H S, SANTAMARINA J C Bacteria in sediments: pore size effects[J]. Géotechnique Letters, 2011, 1 (4): 91- 93
[35]   CHENG L, CORD-RUWISCH R, SHAHINMOHAMED A Cementation of sand soil by microbially induced calcite precipitation[J]. Canadian Geotechnical Journal, 2013, 50 (1): 81- 90
doi: 10.1139/cgj-2012-0023
[36]   TERZIS D, BERNIER-LATMANI R, LALOUI L Fabric characteristics and mechanical response of bio-improved sand to various treatment conditions[J]. Applied Microbiology and Biotechnology, 2016, 60 (5): 588- 593
[37]   徐丹, 唐朝生, 冷挺, 等 干湿循环对非饱和膨胀土抗剪强度影响的试验研究[J]. 地学前缘, 2018, 25 (1): 286- 296
XU Dan, TANG Chao-sheng, LENG Ting, et al Shear strength of unsaturated expansive soil during weting-drying cycles[J]. Earth Science Frontiers, 2018, 25 (1): 286- 296
[38]   CHENU C, BISSONNAIS Y L, ARROUAYS D Organic matter influence on clay wettability and soil aggregate stability[J]. Soil Science Society of America Journal, 2000, 64 (4): 1479- 1486
doi: 10.2136/sssaj2000.6441479x
[39]   WIJAYA M, LEONG E C Swelling and collapse of unsaturated soils due to inundation under one-dimensional loading[J]. Indian Geotechnical Journal, 2016, 46 (3): 239- 251
doi: 10.1007/s40098-015-0172-4
[40]   BISSONNAIS Y L Aggregate stability and assessment of soil crustability and erodibility I: theory and methodology[J]. European Journal of Soil Science, 2010, 48 (1): 39- 48
doi: 10.1111/ejs.1996.47.issue-4
[41]   陈正汉, 方祥位, 朱元青 膨胀土和黄土的细观结构及其演化规律研究[J]. 岩土力学, 2009, 30 (1): 1- 11
CHEN Zheng-han, FANG Xiang-wei, ZHU Yuan-qing Research on meso-structures and their evolution laws of expansive soil and loess[J]. Rock and Soil Mechanics, 2009, 30 (1): 1- 11
doi: 10.3969/j.issn.1000-7598.2009.01.001
[42]   TANG C, CUI Y J, SHI B, et al Desiccation and cracking behaviour of clay layer from slurry state under wetting-drying cycles[J]. Geoderma, 2011, 166 (1): 111- 118
doi: 10.1016/j.geoderma.2011.07.018
[43]   胡节, 吴新亮, 蔡崇法 快速湿润过程中钾和钙离子浓度对土壤团聚体稳定性的影响[J]. 农业工程学报, 2017, 33 (22): 175- 182
HU Jie, WU Xin-liang, CAI Chong-fa Effect of concentration of potassium and calcium cations on soil aggregates stability during fast wetting process[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33 (22): 175- 182
doi: 10.11975/j.issn.1002-6819.2017.22.022
[44]   LUGATO E, SIMONETTI G, MORARI F, et al Distribution of organic and humic carbon in wet-sieved aggregates of different soils under long-term fertilization experiment[J]. Geoderma, 2010, 157 (3/4): 1- 85
[45]   郭伟. 湿润速率和表土团聚体粒径对红壤坡面侵蚀过程的影响[D]. 武汉: 华中农业大学, 2007.
GUO Wei. Effects of wetting rate and surface soil aggregate size on slope erosion process of red soil [D]. Wuhan: Huazhong Agricultural University, 2007.
[46]   王剑云, 钱春香, 王瑞兴, 等 菌液浸泡法在水泥基材料表面覆膜研究[J]. 硅酸盐学报, 2009, 37 (7): 1097- 1102
WANG Jian-yun, QIAN Chun-xiang, WANG Rui-xing, et al Application of carbonate-mineralization bacterium in surface protection of cement based materials[J]. Journal of the Chinese Ceramic Society, 2009, 37 (7): 1097- 1102
doi: 10.3321/j.issn:0454-5648.2009.07.007
[47]   王瑞兴, 钱春香, 王剑云, 等 水泥石表面微生物沉积碳酸钙覆膜的不同工艺[J]. 硅酸盐学报, 2008, 36 (10): 1378- 1384
WANG Rui-xing, QIAN Chun-xiang, WANG Jian-yun, et al Different treated methods of microbiologically deposited CaCO3 layer on hardened cement paste surface [J]. Journal of the Chinese Ceramic Society, 2008, 36 (10): 1378- 1384
doi: 10.3321/j.issn:0454-5648.2008.10.006
[48]   姚海林, 刘少军, 程昌炳 一种天然胶结土粘聚力的微观本质[J]. 岩石力学与工程学报, 2001, 20 (6): 871
YAO Hai-lin, LIU Shao-jun, CHENG Chang-bing Scopic essence of cohesion of a natural cemented soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20 (6): 871
doi: 10.3321/j.issn:1000-6915.2001.06.026
[1] Hai-chao SUN,Wen-jun WANG,Dao-sheng LING. Mechanical properties and microstructure of solidified soil with low cement content[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 530-538.
[2] Yong-gui WANG,Shuai-peng LI,Peter HUGHES,Yu-hui FAN,Xiang-yu GAO. Elevated temperatures performance of modified recycled aggregate concrete[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2047-2057.
[3] Dong-ming YAN,Zhi-hao HUANG,Gong CHEN,Hao QIAN,Jia-hua DENG,Yi LIU. Study on corrosion resistance of low-temperature sintered chemically reactive enamel coated rebars[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 56-63.
[4] Xian-tai JI,Shi-feng WEN,Qing-song WEI,Yan ZHOU,Zhi-ping CHEN. Effect of quenching treatment on performance of S136 steel fabricated via selective laser melting[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 664-670.
[5] Liang-gui YU,Jian ZHOU,Xiao-gui WEN,Jie XU,Ling-hui LUO. Factors influencing permeability anisotropy of remolded kaolin[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 275-283.
[6] WANG Dong-xing, WANG Hong-wei, XIAO Jie. Experimental study on water stability property of dredged sludge solidified with reactive MgO[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 719-726.
[7] CHEN Jing hao, HUANG Jian xin, LU Sheng yong, LI Xiao dong, YAN Jian hua. Microstructure and pollutant analysis of carbon black produced by municipal solid waste open-burning[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 1849-1854.
[8] XU Ri-qing, XU Li-yang, DENG Yi-wen, ZHU Yi-hong. Experimental study on soft clay contact area based on SEM and IPP[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1417-1425.
[9] ZHANG Jun feng, DAI Xiao song, ZOU Wei lie, XU Shun ping, LI Zi you. Experiments on pavement performance of solidified sediment modified with cement[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2165-2171.
[10] LI Bei, TIAN Ye, ZHAO Ruo-yi, DUAN An, LI Zong-jin, MA Hong-yan. Microstructure and modification mechanism of polyacrylate latex modified mortars[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(8): 1345-1352.
[11] SHI Zhi-nan, RAN Qi-hua, WU Xiu-shan, CHEN Hui-jun. Impacts of different rainfall locations on sediment erosion[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(8): 1361-1369.
[12] LI Bei, TIAN Ye, ZHAO Ruo-yi, DUAN An, LI Zong-jin, MA Hong-yan. Microstructure and modification mechanism of polyacrylate latex modified mortars[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(3): 0-07.
[13] RAN Qi-hua, LI Wei, LIANG Ning, XU Yue-ping. Physics-based numerical simulation of human impacts on island soil erosion[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(7): 1199-1204.
[14] RAN Qi-hua, SHI Zhi-nan, XU Yue-ping. Impacts of moving rainfall on sediment concentration of soil erosion[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(5): 803-811.
[15] WANG Hai-long, DONG Yi-sen, SUN Xiao-yan, JIN Wei-liang. Damage mechanism of concrete deteriorated by sulfate attack
in wet-dry cycle environment
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(7): 1255-1261.