Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (1): 56-63    DOI: 10.3785/j.issn.1008-973X.2020.01.007
Civil Engineering, Transportation Engineering     
Study on corrosion resistance of low-temperature sintered chemically reactive enamel coated rebars
Dong-ming YAN1(),Zhi-hao HUANG1,Gong CHEN1,Hao QIAN1,Jia-hua DENG1,Yi LIU2
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. College of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(1212KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The sintering temperature was optimized by differential scanning calorimetry (DSC) and thermogravimetric analysis (TG) in order to analyze the properties and mechanism of low-temperature sintered chemically reactive enamel (LTCRE) coating. Microstructure and corrosion process were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). The corrosion resistance of LTCRE coated steel was analyzed by salt spray test and xenon aging test. Optimized temperature for LTCRE coating is 500-540 °C, and this coating has dense structure and low porosity. Weight change ratio of LTCRE coated steel is 1.6% of that of uncoated steel in the same corrosive environment, peeling radius of LTCRE coated steel after 800 h salt spray test is only 0.26 mm and resisting time in xenon environment is longer than 500 hours. Results indicate that as an inorganic coating, LTCRE coating has better aging resistance and higher stability than epoxy coating. LTCRE coated steel is effective to prevent the infiltration and spread of corrosive substances because of its dense structure and good chemical reaction. Corrosion products accumulated in the corrosion channel can isolate the steel from corrosion, so LTCRE coating can mitigate further corrosion of steel with defects by healing itself.



Key wordschemically reactive enamel coating      microstructure      corrosion resistance      salt mist resistance      peeling resistance      aging resistance     
Received: 10 January 2019      Published: 05 January 2020
CLC:  TU 523  
Cite this article:

Dong-ming YAN,Zhi-hao HUANG,Gong CHEN,Hao QIAN,Jia-hua DENG,Yi LIU. Study on corrosion resistance of low-temperature sintered chemically reactive enamel coated rebars. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 56-63.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.01.007     OR     http://www.zjujournals.com/eng/Y2020/V54/I1/56


低温烧结活性瓷釉涂层钢筋耐腐蚀性能试验研究

为了研究低温烧结活性瓷釉(LTCRE)涂层的性能和机理,利用差示扫描量热法(DSC)和热重法(TG)对LTCRE涂层的烧结温度进行优化,采用扫描电子显微镜(SEM)、X射线能谱分析(EDS)和X射线衍射(XRD)分析涂层微观结构和腐蚀过程,通过中性盐雾试验和氙灯老化试验研究LTCRE涂层钢筋的耐腐蚀性能. LTCRE涂层的优化烧结温度为500~540 °C,涂层具有结构致密、孔隙率低的特点,LTCRE涂层钢筋在腐蚀后的质量变化为普通钢筋的1.6%,800 h盐雾腐蚀后人为缺陷孔的剥离半径为0.26 mm,在氙灯照射下耐老化时长超过500 h. 结果表明,LTCRE涂层作为无机陶瓷涂层,具有比环氧树脂涂层更优异的耐老化性能,具备长期稳定的耐腐蚀能力. 涂层密实少孔的结构和烧结时良好的化学反应使得LTCRE涂层钢筋能够有效阻止外界腐蚀物质渗入与蔓延,即使在缺陷孔发生腐蚀后也能够阻止腐蚀加剧,起到涂层自愈合的效果.


关键词: 活性瓷釉涂层,  微观结构,  耐腐蚀性,  耐盐雾性,  抗剥离性能,  抗老化性 
w(C) w(Mn) w(Si) w(S) w(P) w(Fe)
0.18 0.41 0.17 0.037 0.026 99.18
Tab.1 Chemical components of HPB300 steel bar %
w(P2O5) w(Al2O3) w(SiO2) w(CaF2) w(B2O3) w(CaO) w(Li2O) w(K2O) w(Na2O) w(CoO) w(NiO) w(ZrO2)
24.1 15.8 5.8 6.4 9.4 3.4 6.1 11.5 12.1 1.7 2.3 1.4
Tab.2 Chemical components of LTCRE coating %
Fig.1 DSC and TG analysis of LTCRE coating
Fig.2 Surface morphology of LTCRE coated steel bar sintered at different temperature
Fig.3 SEM images and EDS analysis of LTCRE/CRE coated steel bar
Fig.4 XRD patterns of LTCRE coating
Fig.5 Weight change ratio of LTCRE coated/uncoated steel bar
Fig.6 LTCRE coated/uncoated steel bars in salt spray test
Fig.7 Schemes of corrosion mechanism of FBE and LTCRE coated steel
Fig.8 Schemes of defect hole and peeling distance
缺陷孔 LTCRE涂层钢筋1 LTCRE涂层钢筋2 LTCRE涂层钢筋3 平均值
区1 区2 区3 区4 区1 区2 区3 区4 区1 区2 区3 区4
缺陷孔1 0 0 0.62 0.3 0.32 0 0.18 0 0 0.48 0 0 0.26
缺陷孔2 0 0 0 0 ? ? ? ? 2.2 1.69 0.23 0 0.26
缺陷孔3 0 0.18 0.45 0 0 0 0 0 ? ? ? ? 0.26
Tab.3 Peeling test results of LTCRE coated steel bar after salt spray test mm
Fig.9 Surface morphology of LTCRE coated steel bar before and after xenon aging test
[1]   HOU B R, LI X G, MA X M, et al The cost of corrosion in China[J]. NPJ Materials Degradation, 2017, 1 (1): 1- 10
doi: 10.1038/s41529-017-0001-6
[2]   程兆俊, 宋丹, 江静华, 等 混凝土中钢筋腐蚀与防护研究进展[J]. 热加工工艺, 2016, 45 (6): 14- 19
CHENG Zhao-jun, SONG Dan, JIANG Jing-hua, et al Research progress in corrosion and protection of rebar in concrete[J]. Hot Working Technology, 2016, 45 (6): 14- 19
[3]   CHEN G D, VOLZ J, BROW R, et al. Coated steel rebar for enhanced concrete-steel bond strength and corrosion resistance [R]. Missouri: Missouri Department of Transportation, 2010.
[4]   TANG F J, CHEN G D, VOLZ J, et al Cement-modified enamel coating for enhanced corrosion resistance of steel reinforcing bars[J]. Cement and Concrete Composites, 2013, 35 (1): 171- 180
doi: 10.1016/j.cemconcomp.2012.08.009
[5]   TANG F J, LIN Z B, CHEN G D, et al Three-dimensional corrosion pit measurement and statistical mechanical degradation analysis of deformed steel bars subjected to accelerated corrosion[J]. Construction and Building Materials, 2014, 70 (2): 104- 117
[6]   WU C L, CHEN G D, VOLZ J, et al Local bond strength of vitreous enamel coated rebar to concrete[J]. Construction and Building Materials, 2012, 35 (10): 428- 439
[7]   吴波, 梁悦欢 高温后混凝土和钢筋强度的统计分析[J]. 华南理工大学学报: 自然科学版, 2008, 36 (12): 13- 20
WU Bo, LIANG Yue-huan Statistical analysis of strengths of concrete and steel bar after high-temperature treatment[J]. Journal of South China University of Technology: Natural Science Edition, 2008, 36 (12): 13- 20
[8]   闫东明, 陈根达, 唐福建, 等 活性瓷釉(CRE)涂层钢筋防腐蚀技术研究进展[J]. 中国科学: 技术科学, 2015, 45 (03): 293- 305
YAN Dong-ming, CHEN Gen-da, TANG Fu-jian, et al Recent advances in the development and application of chemically reactive enamel coating for steel bars[J]. Scientia Sinica Technologica, 2015, 45 (03): 293- 305
[9]   张洛栋. 基于活性瓷釉(CRE)技术的钢筋防腐蚀涂层试验研究[D]. 杭州: 浙江大学, 2017.
ZHANG Luo-dong. Experiment study of chemically reactive enamel(CRE) technique based anti-corrosion coating of rebar [D]. Hangzhou: Zhejiang University, 2017.
[10]   闫东明, 张洛栋, 刘毅, 等. 一种用于海洋钢筋混凝土防腐的杀菌涂料及其涂覆工艺: CN106220074A [P]. 2016-12-14.
[11]   闫东明, 刘毅, 张洛栋, 等. 一种钢筋防腐用韧性涂料及其涂覆方法: CN105439625A [P]. 2016-03-30.
[12]   闫东明, 刘毅, 张洛栋, 等. 一种用于钢筋防腐的低通孔率涂层及其涂覆方法: CN105670366A [P]. 2016-06-15.
[13]   闫东明, 刘毅, 张洛栋, 等. 用于钢筋防腐的小孔径无机涂层及其涂覆方法: CN105819691A [P]. 2016-08-03.
[14]   杨帆, 黄之昊, 刘毅, 等 高温后活性瓷釉涂层微观结构和耐腐蚀性能研究[J]. 低温建筑技术, 2018, 40 (2): 1- 3, 7
YANG Fan, HUANG Zhi-hao, LIU Yi, et al Study on microstructure and corrosion resistance of chemically reactive enamel coating after high temperature sintering[J]. Low Temperature Architecture Technology, 2018, 40 (2): 1- 3, 7
[15]   中华人民共和国住房和城乡建设部. 环氧树脂涂层钢筋: JG/T 502-2016 [S]. 北京: 中国标准出版社, 2016.
[16]   中华人民共和国国家质量监督检验检疫总局. 色漆和清漆人工气候老化和人工辐射曝露滤过的氙弧辐射: GB/T 1865-2009 [S]. 北京: 中国标准出版社, 2009.
[17]   辽宁省地质局中心实验室.矿物差热分析[M]. 北京: 地质出版社, 1975: 5.
[18]   DONG S G, ZHAO B, LIN C J, et al Corrosion behavior of epoxy/zinc duplex coated rebar embedded in concrete in ocean environment[J]. Construction and Building Materials, 2012, 28 (1): 72- 78
doi: 10.1016/j.conbuildmat.2011.08.026
[19]   AGRAWAL A, KAWAGUCHI A, CHEN Z Deterioration rates of typical bridge elements in New York[J]. Journal of Bridge Engineering, 2010, 15 (4): 419- 429
doi: 10.1061/(ASCE)BE.1943-5592.0000123
[20]   王晶晶, 董士刚, 叶美琪, 等 环氧涂层室外暴晒和室内加速老化试验相关性研究[J]. 表面技术, 2006, 35 (1): 36- 39
WANG Jing-jing, DONG Shi-gang, YE Mei-qi, et al Correlation between outdoor-exposure and indoor-accelerated aging test for epoxy coating[J]. Surface Technology, 2006, 35 (1): 36- 39
doi: 10.3969/j.issn.1001-3660.2006.01.013
[1] Hai-chao SUN,Wen-jun WANG,Dao-sheng LING. Mechanical properties and microstructure of solidified soil with low cement content[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 530-538.
[2] Yong-gui WANG,Shuai-peng LI,Peter HUGHES,Yu-hui FAN,Xiang-yu GAO. Elevated temperatures performance of modified recycled aggregate concrete[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2047-2057.
[3] Yue-han XIE,Chao-sheng TANG,Bo LIU,Qing CHENG,Li-yang YIN,Ning-jun JIANG,Bin SHI. Water stability improvement of clayey soil based on microbial induced calcite precipitation[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1438-1447.
[4] Xian-tai JI,Shi-feng WEN,Qing-song WEI,Yan ZHOU,Zhi-ping CHEN. Effect of quenching treatment on performance of S136 steel fabricated via selective laser melting[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 664-670.
[5] Liang-gui YU,Jian ZHOU,Xiao-gui WEN,Jie XU,Ling-hui LUO. Factors influencing permeability anisotropy of remolded kaolin[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 275-283.
[6] YANG Ji-hu, SUN Zhi-jian, YUAN Rui-feng, HUANG Hao, CHEN Tian-yu, HU Ya-cai. Study on heat transfer and ash deposit characteristics of fluoroplastic steel air-preheater in power plant[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 577-583.
[7] CHEN Jing hao, HUANG Jian xin, LU Sheng yong, LI Xiao dong, YAN Jian hua. Microstructure and pollutant analysis of carbon black produced by municipal solid waste open-burning[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 1849-1854.
[8] XU Ri-qing, XU Li-yang, DENG Yi-wen, ZHU Yi-hong. Experimental study on soft clay contact area based on SEM and IPP[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1417-1425.
[9] LI Bei, TIAN Ye, ZHAO Ruo-yi, DUAN An, LI Zong-jin, MA Hong-yan. Microstructure and modification mechanism of polyacrylate latex modified mortars[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(8): 1345-1352.
[10] LI Bei, TIAN Ye, ZHAO Ruo-yi, DUAN An, LI Zong-jin, MA Hong-yan. Microstructure and modification mechanism of polyacrylate latex modified mortars[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(3): 0-07.
[11] WANG Hai-long, DONG Yi-sen, SUN Xiao-yan, JIN Wei-liang. Damage mechanism of concrete deteriorated by sulfate attack
in wet-dry cycle environment
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(7): 1255-1261.
[12] WANG Xin-fei, HUANG Zhi-yi, LIU Zhuo, ZHU Xing-yi, XU-Wei. Analysis of distribution properties of coarse aggregates in HMA
based on delaunay triangulation
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(2): 263-268.
[13] CAI Jing-shunCAO Fa-he,CHANG Lin-rong,ZHANG Zhao,ZHANG Jian-qing,CAO Chu-nan. The study of microarc oxidation coating on AZ91 modified by
cerium and its corrosion resistance
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(11): 2055-2062.
[14] HU Jun, ZHONG Li-jun, NI Zhe-ming. Effects of microstructure on temperature dependence of
permeability of NiCuZn ferrites
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(12): 2416-2420.