Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (4): 692-701    DOI: 10.3785/j.issn.1008-973X.2022.04.008
    
Long-term stability analysis and deformation prediction of soft soil foundation pit in Taihu Tunnel
Ao ZHOU1,2(),Bin WANG2,*(),Jie-tao LI2,Xin ZHOU3,Wen-jun XIA3
1. School of Civil and Environmental Engineering, Hubei University of Technology, Wuhan 430068, China
2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
3. Jiangsu Provincial Transportation Engineering and Construction Bureau, Nanjing 210004, China
Download: HTML     PDF(1611KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An intelligent inversion system based on support vector machine (SVM) was established, and creep tests of soft soil were conducted in laboratory under the background of a large foundation pit project of Taihu tunnel. An innovative analysis method was proposed by combining the intelligent inversion and creep tests. The basic physical and mechanical parameters and creep parameters of relevant soil layers were determined combined with the monitoring data. The feasibility of the method in long-term stability analysis and deformation prediction of soft soil foundation pit under overloading was verified by analyzing the deformation at the site of soft soil foundation pit under overloading. The method was applied to the optimization design under overloading of Taihu tunnel, and good results were obtained.



Key wordssoft soil      overload      time-dependent deformation      stability     
Received: 19 May 2021      Published: 24 April 2022
CLC:  TV 551  
Fund:  国家自然科学基金资助项目(51709258,51979270);中国科学院“百人计划”资助项目;江苏省交通工程建设局科技资助项目(212019YH111205)
Corresponding Authors: Bin WANG     E-mail: 237696565@qq.com;bwang@whrsm.ac.cn
Cite this article:

Ao ZHOU,Bin WANG,Jie-tao LI,Xin ZHOU,Wen-jun XIA. Long-term stability analysis and deformation prediction of soft soil foundation pit in Taihu Tunnel. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 692-701.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.04.008     OR     https://www.zjujournals.com/eng/Y2022/V56/I4/692


太湖隧道软土基坑长期稳定性分析与变形预测

以太湖隧道某大型基坑工程为背景,构建基于支持向量机方法的智能反演系统,开展室内软土蠕变实验,提出结合智能反演和蠕变实验的分析方法. 结合现场监测数据,综合确定相关土层的基本物理力学参数及蠕变相关参数. 结合现场超载作用下软土基坑的变形进行分析,验证了该方法在进行软土基坑超载作用下长期稳定性分析及变形预测中的可适用性. 将该方法应用于太湖隧道的超载优化设计,取得了良好的效果.


关键词: 软土,  超载,  时效变形,  稳定性 
Fig.1 Location map of Taihu Tunnel
Fig.2 Top view of construction site
Fig.3 Geological profiles for k30+110
序号 工况 时间 阶段
1 第1层土开挖(含堆土) 2020-09-24—2020-09-27 第1阶段
2 第1层喷锚 2020-09-28—2020-09-29
3 第2层土开挖(含堆土) 2020-09-30—2020-10-03
4 第2层喷锚 2020-10-04—2020-10-05
5 第3层土开挖(含堆土) 2020-10-06—2020-10-09
6 第3层喷锚及垫层施工 2020-10-10—2020-10-15
7 稳定堆土(设计高度为7 m) 2020-10-15以后 第2阶段
Tab.1 Working conditions for foundation pit
Fig.4 Numerical model of k30+100 profile
土层 φ/ (°) c/kPa
2-2粉质黏土 12.5(15.1) 21.3(25.5)
2-3粉土 28.3(33.5) 16.2(19.2)
3-1粉质黏土 13.2(17.4) 41.1(47.0)
3-1c粉土 26.2(27.5) 12.6(13.8)
3-2粉质黏土 10.4(10.4) 20.0(20.0)
4-1黏土 16.1(16.1) 49.5(49.5)
4-1c粉土 20.7(20.7) 10.3(10.3)
Tab.2 Soil parameters before and after inversion
Fig.5 Distribution of horizontal displacement with depth of pile k30+110
Fig.6 GDS triaxial testing system
Fig.7 e-lg t curves under different loading levels
Fig.8 Calculated curve of creep parameter
土层 $ {\lambda ^ * } $ $ {\kappa ^ * } $ ${\;\mu ^ * }$
2-2 0.028 840 0.013 723 0.001 468 00
2-3 0.012 782 0.008 909 0.000 900 74
3-1 0.022 098 0.022 633 0.001 575 99
Tab.3 Creep parameters of each soil layer
Fig.9 Plastic zone distribution at k30+100 profile of foundation pit
时间点 F 塑性区贯通
基坑开挖完成 1.559
基坑开挖完成后第15天 1.435
基坑开挖完成后第30天 1.407
基坑开挖完成后第60天 1.384
基坑开挖完成后第90天 1.365
基坑开挖完成后第120天 1.352
基坑开挖完成后第150天 1.335
Tab.4 Safety factor and plastic zone distribution of foundation pit at different time
Fig.10 Variation curve of safety factor of foundation pit with time at k30+100 profile
时间点 F7.0 F7.5 F8.0 F8.5 F9.0
基坑开挖完成 1.559 1.488 1.431 1.373 1.282
基坑开挖完成后第15天 1.435 1.409 1.395 1.361 ?
基坑开挖完成后第30天 1.407 1.386 1.376 1.354 ?
基坑开挖完成后第60天 1.384 1.372 1.361 1.343 ?
基坑开挖完成后第90天 1.365 1.356 1.347 1.329 ?
基坑开挖完成后第120天 1.352 1.338 1.331 1.314 ?
基坑开挖完成后第150天 1.335 1.321 1.311 1.297 ?
Tab.5 Safety factor of foundation pit at different time under different surcharge heights
Fig.11 Curve of safety factor of foundation pit versus surcharge height when excavation is completed
Fig.12 Curve of safety factor of foundation pit versus time under different surcharge heights
Fig.13 Curve of horizontal displacement at slope top versus time under 8 m surcharge
Fig.14 Horizontal displacement at slope top of k30+100 profile versus time
[1]   刘建航, 刘国彬, 范益群 软土基坑工程中时空效应理论与实践(上)[J]. 地下工程与隧道, 1999, (3): 7- 12
LIU Jian-hang, LIU Guo-bin, FAN Yi-qun The theory and its practice by using the rule of time-space effect in soft soil excavation[J]. Underground Engineering and Tunnels, 1999, (3): 7- 12
[2]   庄丽, 周顺华, 宫全美, 等 大面积软土基坑放坡开挖引起蠕变的数值分析[J]. 岩石力学与工程学报, 2006, 25 (Supple.2): 4209- 4213
ZHUANG Li, ZHOU Shun-hua, GONG Quan-mei, et al Numerical analysis of creep induced by excavating slope in soft soil pit with larger area[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25 (Supple.2): 4209- 4213
[3]   WANG J H, XU Z H, WANG W D Wall and ground movements due to deep excavations in Shanghai soft soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136 (7): 985- 994
doi: 10.1061/(ASCE)GT.1943-5606.0000299
[4]   李夕林, 魏祥, 梁志荣 软土地区深基坑变形控制设计实践与分析[J]. 岩土工程学报, 2014, 36 (Supple.1): 160- 164
LI Xi-lin, WEI Xiang, LIANG Zhi-rong Design practice and analysis of deformation control of deep excavations in soft soil areas[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (Supple.1): 160- 164
[5]   梁发云, 赵鸣一, 陈尚荣 软土地区深大基坑双环形支撑体系受力变形特性分析[J]. 湖南大学学报:自然科学版, 2018, 45 (Supple.1): 173- 177
LIANG Fa-yun, ZHAO ming-yi, CHEN Shang-rong Analysis on bearing and deforming behavior of a large-scale double annular arched girders structural system in deep excavation[J]. Journal of Hunan University: Natural Sciences, 2018, 45 (Supple.1): 173- 177
[6]   HARAHAP S E, OU C Y Finite element analysis of time-dependent behavior in deep excavations[J]. Computers and Geotechnics, 2020, 119: 103300
doi: 10.1016/j.compgeo.2019.103300
[7]   钱七虎 地下工程建设安全面临的挑战与对策[J]. 岩石力学与工程学报, 2012, 31 (10): 1945- 1956
QIAN Qi-hu Challenges faced by underground projects construction safety and countermeasures[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31 (10): 1945- 1956
doi: 10.3969/j.issn.1000-6915.2012.10.001
[8]   万星, 戈铭, 贺智江, 等 南京软土地区基坑墙体变形性状研究[J]. 岩土工程学报, 2019, 41 (Supple.1): 85- 88
WAN Xing, GE Ming, HE Zhi-jiang, et al Characteristics of deformation of retaining wall due to deep excavation in Nanjing[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (Supple.1): 85- 88
[9]   王立忠, 刘亚竞, 龙凡, 等 软土地铁深基坑倒塌分析[J]. 岩土工程学报, 2020, 42 (9): 1603- 1611
WANG Li-zhong, LIU Ya-jing, LONG Fan, et al Collapse of deep excavations for metro lines in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42 (9): 1603- 1611
[10]   包旭范. 软土地基超大型基坑变形控制方法研究[D]. 成都: 西南交通大学, 2008.
BAO Xu-fan. Study on deformation control methods of super-large foundation pit in soft soil [D]. Chengdu: Southwest Jiaotong University, 2008.
[11]   张飞, 王燕, 李志远 邻近超载状态下软土深基坑变形时间特性研究[J]. 吉林建筑大学学报, 2019, 36 (5): 5- 11
ZHANG Fei, WANG Yan, LI Zhi-yuan Study on time characteristics of soft soil deep foundation pit deformation under the condition of overload[J]. Journal of Jilin Jianzhu University, 2019, 36 (5): 5- 11
doi: 10.3969/j.issn.1009-0185.2019.05.002
[12]   黄珏皓, 陈健, 柯文汇, 等 基于时间效应理论的软土深基坑变形分析[J]. 长江科学院院报, 2017, 34 (5): 75- 80
HUANG Jue-hao, CHEN Jian, KE Wen-hui, et al Analysis of deformation of deep excavation in soft clay based on time-effect theory[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34 (5): 75- 80
doi: 10.11988/ckyyb.20151067
[13]   朱江华, 余小强 堆载下临江深基坑支护结构性状的ABAQUS数值分析[J]. 隧道建设, 2017, 37 (Supple.1): 39- 45
ZHU Jiang-hua, YU Xiao-qiang Numerical analysis of characteristics of retaining structures of deep foundation pit adjacent to river under heaped load by software ABAQUS[J]. Tunnel Construction, 2017, 37 (Supple.1): 39- 45
[14]   林志斌, 李元海, 刘继强 软土基坑变形时空演化规律研究[J]. 现代隧道技术, 2016, 53 (3): 82- 90
LIN Zhi-bin, LI Yuan-hai, LIU Ji-qiang A study on the spatial-temporal evolution regularity of the deformation of a foundation pit in soft soil[J]. Modern Tunneling Technology, 2016, 53 (3): 82- 90
[15]   王坤 深圳土体蠕变特性在深基坑工程中的应用[J]. 铁道工程学报, 2011, 28 (8): 53- 57
WANG Kun Application of soil creep characteristics in deep foundation pit project in Shenzhen[J]. Journal of Railway Engineering Society, 2011, 28 (8): 53- 57
doi: 10.3969/j.issn.1006-2106.2011.08.010
[16]   郭海柱, 张庆贺, 朱继文, 等 土体耦合蠕变模型在基坑数值模拟开挖中的应用[J]. 岩土力学, 2009, 30 (3): 688- 692
GUO Hai-zhu, ZHANG Qing-he, ZHU Ji-wen, et al Application of soil coupled creep model to simulate foundation pit excavation[J]. Rock and Soil Mechanics, 2009, 30 (3): 688- 692
doi: 10.3969/j.issn.1000-7598.2009.03.020
[17]   VERMEER P A, NEHER H P. A soft soil model that accounts for creep [C]// Proceedings of Plaxis Symposium “Beyond 2000 in Computational Geotechnics”. Amsterdam: [s. n.], 1999: 249-262.
[18]   常士骠, 张苏民. 工程地质手册 [M]. 4版. 北京: 中国建筑工业出版社, 2007.
[19]   杨章财. 宁波软土的蠕变特性及模型研究[D]. 杭州: 浙江工业大学, 2016.
YANG Zhang-cai. Study on creep characteristics and model of soft soil in Ningbo [D]. Hangzhou: Zhejiang University of Technology, 2016.
[20]   陈志波, 孔秋平 福州软土次固结变形特性试验研究[J]. 中南大学学报:自然科学版, 2014, 45 (10): 3602- 3607
CHEN Zhi-bo, KONG Qiu-ping Experimental study on secondary consolidation properties of Fuzhou soft soils[J]. Journal of Central South University: Science and Technology, 2014, 45 (10): 3602- 3607
[21]   BENZ T. Small-strain stiffness of soils and its numerical consequences [D]. Stuttgart: University of Stuttgart, 2007.
[22]   张硕, 叶冠林, 甄亮, 等 考虑小应变下刚度衰减特征的软土本构模型[J]. 上海交通大学学报, 2019, 53 (5): 535- 539
ZHANG Shuo, YE Guan-lin, ZHEN Liang, et al Constitutive model of soft soil after considering small strain stiffness decay characteristics[J]. Journal of Shanghai Jiao Tong University, 2019, 53 (5): 535- 539
[23]   肖明清, 刘浩, 彭长胜, 等 基于神经网络的深厚软土地层参数反演分析[J]. 地下空间与工程学报, 2017, 13 (1): 279- 286
XIAO Ming-qing, LIU Hao, PENG Chang-sheng, et al Analysis of parameters in deep soft soil layer based on neural network[J]. Chinese Journal of Underground Space and Engineering, 2017, 13 (1): 279- 286
[24]   吴博, 赵法锁, 贺子光, 等 基于BA-LSSVM模型的黄土滑坡致灾范围预测[J]. 中国地质灾害与防治学报, 2020, 31 (5): 1- 6
WU Bo, ZHAO Fa-suo, HE Zi-guang, et al Prediction of the disaster area of loess landslide based on least square support vector machine optimized by bat algorithm[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31 (5): 1- 6
[25]   李晓龙. 基于支持向量机的岩体力学参数反演及工程应用[D]. 郑州: 郑州大学, 2009.
LI Xiao-long. Mechanical parameters inversion of rock mass with support vector machine and its engineering application [D]. Zhengzhou: Zhengzhou University, 2009.
[1] En-yu WU,Guo-dong QIAN,Bin LI. Water adsorption in aluminum-based metal-organic framework for atmospheric water harvesting[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 186-192.
[2] Jie WANG,Zhao LI,Zi-ran LI. Research on tread wear behavior of all steel radial truck tire[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1615-1624.
[3] Jia-jia WANG,Ying-feng CAI,Long CHEN,Shao-hua WANG,De-hua SHI. Coordinated control of hybrid electric vehicle based on extended state observer estimation[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1225-1233.
[4] Jia-yi SHEN,Meng KU,Li-zhong WANG. Stability analyses of submarine slopes based on shear band propagation method[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1299-1307.
[5] Xi LI,Jian HU,Jian-yong YAO,Ke-peng WEI,Peng-fei WANG,Hao-chen XING. High precision control of electromechanical system based on observer friction compensation[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1150-1158.
[6] Chao-feng ZENG,Huan LIAO,Miao-kun LI,Xiu-li XUE,Guo-xiong MEI. Effect of buttress wall length on retaining wall deflection induced by dewatering[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2252-2259.
[7] Cheng-fei TAO,Hao ZHOU,Liu-bin HU,Zi-hua LIU,Ke-fa CEN. Dynamic characteristics of thermoacoustic instability of liquid spray combustion[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2108-2114.
[8] Yu-qiong WANG,Song GAO,Yu-hai WANG,Yi XU,Dong GUO,Ying-chao ZHOU. Trajectory tracking and stability control of high-speed autonomous vehicle[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1922-1929.
[9] Wu-ming LENG,Qi-shu ZHANG,Fang XU,Hui-kang LENG,Ru-song NIE,Xiu-hang YANG. Additional confining pressure field and enhancement effect of prestressed embankment[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 858-869.
[10] Hui-fang WANG,Chen-yu ZHANG. Prediction of voltage stability margin in power system based on extreme gradient boosting algorithm[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 606-613.
[11] Chi QIU,Jian-kun HUANG,Yu-cun HU,Xiao-ping GUO,Yun-qing HU. Influence of irrigation on slope stability of dump in arid desert area of Northwest China: a case study of Xinxing coal mine, Wuhai[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1467-1477.
[12] Yue-han XIE,Chao-sheng TANG,Bo LIU,Qing CHENG,Li-yang YIN,Ning-jun JIANG,Bin SHI. Water stability improvement of clayey soil based on microbial induced calcite precipitation[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1438-1447.
[13] Liang LV,Hong CHEN,Xun GONG,Hai-guang ZHAO,Yun-feng HU. Cooling system modeling and coolant temperature control for gasoline engine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1119-1129.
[14] Guo-jun WANG,Hong-guo XU,Hong-fei LIU. Handling stability analysis of B-double[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 299-306.
[15] Hai-hui YUAN,Yi-min GE,Chun-biao GAN. Adaptive robust control of dynamic walking of bipedal robots under uncertain disturbances[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2049-2057.