Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (9): 1615-1624    DOI: 10.3785/j.issn.1008-973X.2021.09.002
    
Research on tread wear behavior of all steel radial truck tire
Jie WANG1(),Zhao LI1,2,Zi-ran LI1,*()
1. CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
2. Wuhan Second Ship Design and Research Institute, Wuhan 430205, China
Download: HTML     PDF(2231KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The tire tread wear behavior was simulated through a wear post processing method, based on the finite element model of 12R22.5 all steel truck radial tire with longitudinal patterns. Comparing the calculated results of groove depth with the road wear test results under braking conditions, the relative error of the two is 10.2% which shows the reliability of the method. The tire tread wear in four different conditions was analyzed. Results show that the tire wear in free rolling conditions mainly occurs on the side of grooves. The maximum wear depth appears in the shoulder block under braking conditions, while the maximum wear depth of driving conditions appears in the middle block of the tread. The tread wear rate under cornering conditions is the greatest. The influence of inflation pressure and load on tread wear was investigated. The lower inflation pressure and the higher load lead to the increased unevenness of tread wear profile. Numerical results show that the quality of rubber wear in the overpressure-overload condition is 1.56 times that of the rated inflation and load condition after 5×104 km of free rolling.



Key wordsall steel radial truck tire      road wear test      rolling condition      overpressure-overload condition      finite element analysis     
Received: 28 September 2020      Published: 20 October 2021
CLC:  TB 115  
Fund:  中国科学院战略性先导科技专项(C类)(XDC06030200);国家自然科学基金资助项目(11902229)
Corresponding Authors: Zi-ran LI     E-mail: wj9@mail.ustc.edu.cn;lzr@ustc.edu.cn
Cite this article:

Jie WANG,Zhao LI,Zi-ran LI. Research on tread wear behavior of all steel radial truck tire. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1615-1624.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.09.002     OR     https://www.zjujournals.com/eng/Y2021/V55/I9/1615


全钢载重子午线轮胎胎面磨耗行为研究

以12R22.5全钢载重子午线轮胎为研究对象,建立含纵向花纹的轮胎有限元模型,采用磨耗后处理法模拟胎面磨耗行为. 将制动条件下计算得到的沟深磨耗量与道路实测结果进行对比,两者相对误差为10.2%,验证了该处理方法的可靠性. 对4种不同行驶工况的轮胎胎面进行磨耗仿真分析. 结果表明,自由滚动工况磨耗主要发生在花纹沟边,制动工况胎肩部花纹块磨耗深度较大,驱动工况磨耗主要发生在胎中部花纹块,侧偏工况胎面橡胶磨耗速率最快. 考察充气压力和载荷对胎面磨耗的影响. 结果表明,载荷增大、充气压力减小使胎面磨耗的不均匀性增加. 对于超压超载工况,仿真得出自由滚动5×104 km后胎面橡胶磨耗质量是额定工况的1.56倍.


关键词: 全钢载重子午线轮胎,  道路磨耗试验,  行驶工况,  超压超载工况,  有限元分析 
Fig.1 2D finite element model of 12R22.5 all steel radial truck tire
Fig.2 Total finite element model
Fig.3 Comparison of experimental and simulated tire deflection results
状态 D/mm B/mm S/cm2
试验 1 083.00 295.00 487.44
仿真 1 084.30 293.11 501.94
Tab.1 Comparison of tire model test and simulation results
Fig.4 Comparison of tire footprints
Fig.5 Friction coefficient test results of rubber wheel on 60 mesh corundum disc
Fig.6 Fitting surface of friction coefficient of tread rubber on 60 mesh corundum disc
测试工况 F/N α/(°) Vd/(km·h?1) Ld/m
1 75 5.5 6 100 0
2 75 5.5 20 170 0
3 75 9 6 300
4 75 9 20 400
5 75 16 6 100
6 75 16 20 170
Tab.2 Tread rubber abrasion test plan
Fig.7 Fitting results of tread rubber wear rate
Fig.8 Micro-element of tread node i
Fig.9 Wear direction of tread node i
Fig.10 Calculation process of tread wear solution
Fig.11 Wear depth of grooves
工况 FN/N P/MPa V/(km·h?1) s/% β/(°) L/104 km
自由滚动 19 600 0.93 80 0 0 5.00
制动 19 600 0.93 80 1 0 0.30
驱动 19 600 0.93 80 1 0 0.30
侧偏 19 600 0.93 80 0 1 0.08
Tab.3 Parameters of 12R22.5 all steel steel truck radial tire in four rolling conditions
Fig.12 Evolution of tread wear profile under four rolling conditions
Fig.13 Distance of tires in each increment under four rolling conditions
Fig.14 Comparison of wear under four rolling conditions
Fig.15 Comparison of wear under different pressure
Fig.16 Contact pressure under different pressure
Fig.17 Comparison of wear under different load
Fig.18 Contact pressure under different load
Fig.19 Comparison of tread wear under overpressure- overload and rated pressure load
Fig.20 Comparison of Ground imprint under overpressure- overload and rated pressure load
Fig.21 Comparison of rubber quality under overpressure-overload and rated pressure load
[1]   GENT A N, WALTER J D. The pneumatic tire [M]. Washington, D C: National Highway Traffic Safety Administration, 2005.
[2]   SOUTHERN E Rapid tire wear measurements using a two-wheeled trailer[J]. Tire Science and Technology, 1973, 1 (1): 3- 16
doi: 10.2346/1.2167154
[3]   HUEMER T, LIU W N, EBERHARDSTEINER J A 3D finite element formulation describing the friction behavior of rubber on ice and concrete surface[J]. Engineering Computations, 2001, 18 (3/4): 417- 437
doi: 10.1108/02644400110387109
[4]   DORSCH V, BECKER A, VOSSEN L Enhanced rubber friction model for finite element simulations of rolling tyres[J]. Plastics, Rubber and Composites, 2002, 31 (10): 458- 464
doi: 10.1179/146580102225006486
[5]   ZHENG D Prediction of tire tread wear with FEM steady state rolling contact simulation[J]. Tire Science and Technology, 2003, 31 (3): 189- 202
doi: 10.2346/1.2135268
[6]   SMITH K R, KENNEDY R H, KNISLEY S B Prediction of tire profile wear by steady-state FEM[J]. Tire Science and Technology, 2008, 36 (4): 290- 303
doi: 10.2346/1.2999703
[7]   王国林, 王晨, 张建, 等 基于有限元分析的轮胎磨损性能优化[J]. 汽车工程, 2009, 31 (9): 867- 870
WANG Guo-lin, WANG Chen, ZHANG Jian, et al Tire wear performance optimization based on finite element analysis[J]. Automotive Engineering, 2009, 31 (9): 867- 870
doi: 10.3321/j.issn:1000-680X.2009.09.016
[8]   许顺凯, 臧孟炎, 周涛 基于几何更新方法的轮胎胎面磨耗行为分析[J]. 机械设计与制造工程, 2018, 47 (3): 86- 90
XU Shun-kai, ZANG Meng-yan, ZHOU Tao Analysis of tire tread wear behavior based on updated geometry method[J]. Machine Design and Manufacturing Engineering, 2018, 47 (3): 86- 90
doi: 10.3969/j.issn.2095-509X.2018.03.017
[9]   何涛, 李子然, 汪洋 子午线轮胎胎面花纹块滑动磨损有限元分析[J]. 工程力学, 2010, 27 (7): 237- 243
HE Tao, LI Zi-ran, WANG Yang Finite element analysis for sliding abrasion of tread blocks of radial tire[J]. Engineering Mechanics, 2010, 27 (7): 237- 243
[10]   吴健, 王泽君, 王友善, 等 基于摩擦功的全钢载重子午线轮胎的磨耗性能研究[J]. 橡胶工业, 2013, 60 (2): 80- 84
WU Jian, WANG Ze-jun, WANG You-shan, et al Study on wear property of truck and bus radial tire based on friction power[J]. Rubber Industry, 2013, 60 (2): 80- 84
doi: 10.3969/j.issn.1000-890X.2013.02.003
[11]   CHO J R, CHOI J H, KIM Y S Abrasive wear amount estimate for 3D patterned tire utilizing frictional dynamic rolling analysis[J]. Tribology International, 2011, 44 (7): 850- 858
[12]   JIN C, HOU C, JIN X FE simulation of tire wear with complicated tread pattern[J]. Procedia Engineering, 2011, 15: 5015- 5019
doi: 10.1016/j.proeng.2011.08.932
[13]   MUKRAS S, KIM N H, SAWYER W G, et al Numerical integration schemes and parallel computation for wear prediction using finite element method[J]. Wear, 2009, 266 (7-8): 822- 831
doi: 10.1016/j.wear.2008.12.016
[14]   LI Z, LI Z, WANG Y An integrated approach for friction and wear simulation of tire tread rubber. Part I: friction test, characterization and modeling[J]. Tire Science and Technology, 2020, 48 (2): 123- 145
doi: 10.2346/tire.19.170174
[15]   LI Z, LI Z, WANG Y An integrated approach for friction and wear simulation of tire tread rubber. Part II: wear test, characterization and modeling[J]. Tire Science and Technology, 2020, 48 (2): 146- 165
doi: 10.2346/tire.19.170175
[16]   黄文元, 王旭东, 刘瀚飚, 等 公路货运超载运输现状及对策的建议[J]. 公路交通科技, 2003, 20 (2): 148- 152
HUANG Wen-yuan, WANG Xu-dong, LIU Han-biao, et al Overloaded trucking in China and countermeasures[J]. Journal of Highway and Transportation Research and Development, 2003, 20 (2): 148- 152
doi: 10.3969/j.issn.1002-0268.2003.04.039
[17]   YEOH O H Some forms of the strain energy function for rubber[J]. Rubber Chemistry and Technology, 1993, 66 (5): 754- 771
doi: 10.5254/1.3538343
[18]   夏勇, 李炜, 夏春光 自动网格法在轮胎橡胶力学行为测试中的应用[J]. 实验力学, 2002, 17 (4): 412- 418
XIA Yong, LI Wei, XIA Chun-guang Application of automated grid method in the mechanical-behavior testing of tire rubber[J]. Journal of Experimental Mechanics, 2002, 17 (4): 412- 418
doi: 10.3969/j.issn.1001-4888.2002.04.004
[19]   ABAQUS Inc. ABAQUS Analysis User's Manual Version 6.14 [M]. Providence, RI: Dassault Systèmes Simulia Corp, 2014.
[20]   PERSSON B N J On the theory of rubber friction[J]. Surface Science, 1999, 401 (3): 445- 454
[21]   KLUPPEL M, HEINRICH G Rubber friction on self-affine road tracks[J]. Rubber Chemistry and Technology, 2000, 7 (4): 578- 605
[22]   李钊, 李子然, 夏源明 滚动轮胎接触摩擦行为的实验研究与数值分析[J]. 上海交通大学学报, 2013, 47 (5): 817- 821
LI Zhao, LI Zi-ran, XIA Yuan-ming Experimental and numerical study of frictional contact behavior of rolling tire[J]. Journal of Shanghai Jiao Tong University, 2013, 47 (5): 817- 821
[23]   LUPKER H, CHELI F, BRAGHIN F, et al Numerical prediction of car tire wear[J]. Tire Science and Technology, 2004, 32 (3): 164- 186
doi: 10.2346/1.2186780
[24]   李钊. 轮胎胎面磨耗行为的实验研究与数值分析[D]. 合肥: 中国科学技术大学, 2013.
LI Zhao. Experimental and numerical study on tire tread wear behavior [D]. Hefei: University of Science and Tecnology of China, 2013.
[25]   XIE L J, SCHMIDT J, SCHMIDT C, et al 2D FEM estimate of tool wear in turning operation[J]. Wear, 2005, 258 (10): 1479- 1490
doi: 10.1016/j.wear.2004.11.004
[26]   尹海山. 轮胎磨耗及其温度场的理论与实验研究[D]. 青岛: 青岛科技大学, 2017.
YIN Hai-shan. Theoretical and experimental study on tire wear and temperature field [D]. Qingdao: Qingdao University of Science and Technology, 2017.
[1] Xing-yu ZENG,Jun-yang LI,Jia-xu WANG,Ting TANG,Cong LI. Design and modification of harmonic double circular arc tooth profile based on finite element method[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1548-1557.
[2] Wei WANG,Hao-tian ZHAO,Chao-chao QUAN,Hong-lai SONG,Yu LI,Yi-xiang ZHOU. Shear bearing capacity of vertical corrugated steel plate shear wall with replaceable toe[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1407-1418.
[3] Ming-feng HUANG,Xin-rui WEI,He-kai YE,Jian-yun YE,Wen-juan LOU. Wind-induced response of crane structure with double flat arms for long-span transmission towers[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1351-1360.
[4] Jun-xia JIANG,Hai-peng LIAO. Stiffness modeling and structure optimization of heavy-duty intelligent stacking equipment[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1948-1959.
[5] Guo-hui SHEN,Yu-nan BAO,Yong GUO,Gang SONG,Yi-wen WANG. Along-line wind loads and distribution patterns of transmission lines[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1658-1665.
[6] Kai-jun LOU,Feng YU,Tang-dai XIA,Jian MA. Stability analysis of diaphragm wall retained structure in clay[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1697-1705.
[7] Zheng ZHANG,Hao ZHANG,Hao CHAI,Hua-ping WU,Shao-fei JIANG. Design and performance analysis of variable stiffness multi-stable composite laminate structure[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1341-1346.
[8] Yong CHEN,Yong-quan LI,Chong-lei XIE,Kuang-liang QIAN,Ye-sheng ZHANG,Peng-yun CHENG,Xuan-zuo YE. Pushover test study of masonry structure restrained by steel-tube-bundle shear walls[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 499-511.
[9] Li-guo WANG,Xu-dong SHAO,Jun-hui CAO,Yu-bao CHEN,Guang HE,Yang WANG. Performance of steel-ultrathin UHPC composite bridge deck based on ultra-short headed studs[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2027-2037.
[10] Shui-guang TONG,Jia-zhi MIAO,Zhe-ming TONG,Shun HE,Shu-feng XIANG,Xiang-hui SHUAI. Finite element analysis and optimization for static and dynamic characteristics of diesel forklift frame[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1637-1646.
[11] Shao-heng HE,Tang-dai XIA,Lian-xiang LI,Bing-qi YU,Ze-yong LIU. Influence of groundwater seepage on deformation of foundation pits with suspended impervious curtains[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 713-723.
[12] Wen-qiang DAI,Xu ZHENG,Zhi-yong HAO,Yi QIU. Prediction of high-speed train interior noise using energy finite element analysis[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2396-2403.
[13] XIA Yong-qiang, XIAO Nan. Initial rotational stiffness formula of semi-rigid joint with T-stub in beam-to-column connection[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1935-1942.
[14] WANG Xing, XU Wu, ZHANG Xiao-jing, ZHANG Li-na, HU Ben-run. Numerical prediction and experimental verification of fatigue life of TC4 plate strengthened by cold expansion[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1610-1618.
[15] JIANG Nan, CHEN Min-you, XU Sheng-you, LAI Wei, GAO Bing. Thermal fatigue of IGBT module considering crack damage[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 825-833.