|
|
Design and performance analysis of variable stiffness multi-stable composite laminate structure |
Zheng ZHANG1( ),Hao ZHANG1,Hao CHAI2,Hua-ping WU1,Shao-fei JIANG1 |
1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China 2. College of Mechanical Engineering, Zhijiang College of Zhejiang University of Technology, Shaoxing 312030, China |
|
|
Abstract Two variable stiffness multi-stable composite laminate structures were designed by analyzing the relationship between the theoretical model of regional fiber angle change and the stiffness change of composite structures. The variable stiffness multi-stable composite structure was modeled, and the stable configuration of the multi-stable composite structures with variable stiffness was obtained by solving different equilibrium equations with Matlab. The experimental specimens were prepared to measure the mechanical properties with different stable transformation. The cooling process were simulated by finite element software Abaqus, and the numerical results of equilibrium stable configuration were obtained. The stable configuration, the stable transformation maximum load and the load-displacement curvatures were analyzed by combining with the theoretical, numerical and experimental results.
|
Received: 09 March 2019
Published: 05 July 2020
|
|
变刚度多稳态复合材料结构设计与性能分析
通过研究复合材料层合板结构局部纤维角变化的理论模型与刚度变化的关系,设计2种变刚度多稳态复合材料层合板结构. 对变刚度多稳态复合材料结构进行建模,运用Matlab求出不同的平衡方程解,得到变刚度多稳态复合材料结构的稳态构型. 制备相应的实验试件,测量变刚度多稳态复合材料结构不同稳态转变时的力学性能,通过有限元软件Abaqus模拟变刚度多稳态复合材料结构的降温冷却过程,得到平衡稳定状态的数值解. 结合理论、数值与试验,分析变刚度多稳态复合材料结构的稳态构型、稳态转变最大载荷及载荷-位移曲线的变化规律.
关键词:
变刚度,
多稳态复合材料,
经典层合板理论,
有限元分析
|
|
[1] |
KUDER I K, ARRIETA A F, RIST M, et al Aeroelastic response of a selectively compliant morphing aerofoil featuring integrated variable stiffness bi-stable laminates[J]. Journal of Intelligent Material Systems and Structures, 2016, 27 (14): 1949- 1966
doi: 10.1177/1045389X15620038
|
|
|
[2] |
SOUSA C S, CAMANHO P P, SULEMAN A Analysis of multistable variable stiffness composite plates[J]. Composite Structures, 2013, 98 (3): 34- 46
|
|
|
[3] |
WALDHART C. Analysis of tow-placed, variable-stiffness laminates [D]. Virginia: Virginia Tech, 1996.
|
|
|
[4] |
GURDAL Z, OLMEDO R In-plane response of laminates with spatially varying fiber orientations-variable stiffness concept[J]. American Institute of Aeronautics and Astronautics Journal, 1993, 31 (4): 751- 758
doi: 10.2514/3.11613
|
|
|
[5] |
GURDAL Z, TATTING B F, WU C K Variable stiffness composite panels: effects of stiffness variation on the in-plane and buckling response[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39 (5): 911- 922
doi: 10.1016/j.compositesa.2007.11.015
|
|
|
[6] |
BLOM A W, STICKLER P B, GURDAL Z Optimization of a composite cylinder under bending by tailoring stiffness properties in circumferential direction[J]. Composites Part B: Engineering, 2010, 41 (2): 157- 165
doi: 10.1016/j.compositesb.2009.10.004
|
|
|
[7] |
邵忠喜. 纤维铺放装置及其铺放关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2010. SHAO Zhong-xi. Research on fiber laying device and its key technologies [D]. Harbin: Harbin University of Technology, 2010.
|
|
|
[8] |
LE H M, CAO L, DO T N, et al Design and modelling of a variable stiffness manipulator for surgical robots[J]. Mechatronics, 2018, 53: 109- 123
doi: 10.1016/j.mechatronics.2018.05.012
|
|
|
[9] |
PEETERS D M J, HESSE S, ABDALLA M M Stacking sequence optimization of variable stiffness laminates with manufacturing constraints[J]. Composite Structures, 2015, 125: 596- 604
doi: 10.1016/j.compstruct.2015.02.044
|
|
|
[10] |
NIK M A, FAYAZBAKHSH K, PASINI D, et al Optimization of variable stiffness composites with embedded defects induced by automated fiber placement[J]. Composite Structures, 2014, 107: 160- 166
doi: 10.1016/j.compstruct.2013.07.059
|
|
|
[11] |
KUDER I K, ARRIETA A F, ERMANNI P Design space of embeddable variable stiffness bi-stable elements for morphing applications[J]. Composite Structures, 2015, 122: 445- 455
doi: 10.1016/j.compstruct.2014.11.061
|
|
|
[12] |
KHANI A, IJSSELMUIDEN S T, ABDALLA M M, et al Design of variable stiffness panels for maximum strength using lamination parameters[J]. Composites Part B: Engineering, 2011, 42 (3): 546- 552
doi: 10.1016/j.compositesb.2010.11.005
|
|
|
[13] |
孔斌, 顾杰斐, 陈普会, 等 变刚度复合材料结构的设计、制造与分析[J]. 复合材料学报, 2017, 34 (10): 2121- 2133 KONG Bin, GU Jie-fei, CHEN Pu-hui, et al Design, manufacture and analysis of variable stiffness composite structures[J]. Journal of Composite Materials, 2017, 34 (10): 2121- 2133
|
|
|
[14] |
DURAN A V, FASANELLA N A, SUNDARARAGHAVAN V, et al Thermal buckling of composite plates with spatial varying fiber orientations[J]. Composite Structures, 2015, 124: 228- 235
doi: 10.1016/j.compstruct.2014.12.065
|
|
|
[15] |
RAHMAN T, IJSSELMUIDEN S T, ABDALLA M M, et al Postbuckling analysis of variable stiffness composite plates using a finite element-based perturbation method[J]. International Journal of Structural Stability and Dynamics, 2011, 11 (4): 735- 753
doi: 10.1142/S0219455411004324
|
|
|
[16] |
ARRIETA A F, KUDER I K, RIST M, et al Passive load alleviation aerofoil concept with variable stiffness multi-stable composites[J]. Composite Structures, 2014, 116: 235- 242
doi: 10.1016/j.compstruct.2014.05.016
|
|
|
[17] |
COBURN B H, WU Z, WEAVER P M Buckling analysis of stiffened variable angle tow panels[J]. Composite Structures, 2014, 111 (11): 259- 270
|
|
|
[18] |
XIONG C, LEI Y, YAO X Dynamic experimental study of deployable composite structure[J]. Applied Composite Materials, 2011, 18 (5): 439- 448
doi: 10.1007/s10443-010-9174-7
|
|
|
[19] |
ZHANG Z, WU H, YE G, et al Experimental study on bistable behaviour of anti-symmetric laminated cylindrical shells in thermal environments[J]. Composite Structures, 2016, 144: 24- 32
doi: 10.1016/j.compstruct.2016.02.062
|
|
|
[20] |
ZHANG Z, WU H, YE G, et al Systematic experimental and numerical study of bistable snap processes for anti-symmetric cylindrical shells[J]. Composite Structures, 2014, 112: 368- 377
doi: 10.1016/j.compstruct.2014.02.030
|
|
|
[21] |
LEI Y M, YAO X F Experimental study of bistable behaviors of deployable composite structure[J]. Journal of Reinforced Plastics and Composites, 2010, 29 (6): 865- 873
doi: 10.1177/0731684408100738
|
|
|
[22] |
刘东新, 刘伟. 复合材料力学基础[M]. 西安: 西北工业大学出版社, 2010.
|
|
|
[23] |
SCHLECHT M, SCHULTE K Advanced calculation of the room-temperature shapes of unsymmetric laminates[J]. Journal of Composite Materials, 1999, 33 (16): 1472- 1490
doi: 10.1177/002199839903301601
|
|
|
[24] |
ARRIETA A F, KUDER I K, WAEBER T, et al Variable stiffness characteristics of embeddable multi-stable composites[J]. Composites Science and Technology, 2014, 97: 12- 18
doi: 10.1016/j.compscitech.2014.03.017
|
|
|
[25] |
HALDAR A, REINOSO J, JANSEN E, et al Thermally induced multistable configurations of variable stiffness composite plates: Semi-analytical and finite element investigation[J]. Composite Structures, 2018, 183: 161- 175
doi: 10.1016/j.compstruct.2017.02.014
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|