Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (7): 1335-1340    DOI: 10.3785/j.issn.1008-973X.2020.07.011
    
Design and experiment of longitudinal-flexural composite ultrasonic transducer for chip bonding
Guang-hao HU1(),Jin-xue XUE1,Wen-ju MA1,Zhi-li LONG2,*()
1. School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang 471003, China
2. School of Mechatronics Engineering and Automation, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
Download: HTML     PDF(1388KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A piezoelectric transducer with longitudinal-flexural composite ultrasonic mode was developed in order to solve the problem that the ultrasonic energy with one-dimensional longitudinal mode causes insufficient bonding area during chip bonding. The transducer can generate composite ultrasonic vibration to replace the conventional longitudinal vibration. The finite element simulation by ANSYS Workbench was employed to conduct the modal analysis and harmonic response analysis of transducer. The resonant frequency and mode shape of the longitudinal and flexural modes were obtained. The longitudinal and the flexural vibration modes were degenerated by adjusting the size of the transducer structure. The frequency and impedance testing of the prototype were conducted by impedance analyzer. The longitudinal and flexural amplitude of the transducer were measured by laser Doppler vibrometer. The experimental results accorded with the finite element calculation. The amplitude of the longitudinal and flexural vibration showed an upward tendency with the increasing of driving voltage. Results prove that the designed transducer can achieve the longitudinal-flexural composite vibration.



Key wordsultrasonic transducer      longitudinal-flexural composite vibration      modal analysis      harmonic response analysis      chip bonding     
Received: 03 July 2019      Published: 05 July 2020
CLC:  TB 552  
Corresponding Authors: Zhi-li LONG     E-mail: 632944546@qq.com;longzhili@hit.edu.cn
Cite this article:

Guang-hao HU,Jin-xue XUE,Wen-ju MA,Zhi-li LONG. Design and experiment of longitudinal-flexural composite ultrasonic transducer for chip bonding. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1335-1340.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.07.011     OR     http://www.zjujournals.com/eng/Y2020/V54/I7/1335


芯片键合纵弯复合超声换能器的设计与试验

为了解决当前采用一维纵向超声加载模式进行芯片键合时造成结合面不充分的问题,设计纵弯复合超声能量加载模式的压电超声换能器,实现轴向纵振和水平弯振复合的超声振动代替传统单一的轴向振动. 采用ANSYS软件,对换能器有限元模型进行模态分析和谐响应分析,得到换能器纵振和弯振模态的谐振频率及振型. 通过调节换能器结构尺寸,实现纵振与弯振模态的简并. 采用阻抗分析仪对样机的频率和阻抗进行测试,使用激光多普勒测振仪测试换能器的纵振与弯振幅值,测试结果与有限元仿真计算结果一致,发现纵向与弯曲振幅均随着驱动电压的增加呈近似线性上升趋势, 证明设计的压电换能器实现了纵弯复合振动.


关键词: 超声换能器,  纵弯复合振动,  模态分析,  谐响应分析,  芯片键合 
Fig.1 Schematic structure of composite transducer
Fig.2 Schematic structure of longitudinal transducer
Ls L1 L2 L3 D1 D2
10 9 18 30 13.5 8
Tab.1 Structural parameters of longitudinal transducer mm
组成部分 材料 ρ/(kg·m?3 E/(1011N·m?2 μ
后盖板变幅杆安装环 316不锈钢 7 800 2.06 0.29
劈刀 钨钢 4 000 3.13 0.27
预紧螺钉 45钢 7 850 2.05 0.30
Tab.2 Material parameters of transducer components
Fig.3 Longitudinal vibration mode of transducer
Fig.4 Flexural vibration mode of transducer
Fig.5 Longitudinal displacement mode of transducer
Fig.6 Flexural displacement mode of transducer
Fig.7 Longitudinal and flexural shape of transducer
Fig.8 Amplitude at different frequencies in harmonic response
Fig.9 Prototype of longitudinal-flexural composite transducer
Fig.10 Frequency characteristic of longitudinal-flexural composite transducer
Fig.11 Vibration testing platform for longitudinal-flexural composite transducer
Fig.12 Amplitude of longitudinal-flexural composite transducer
Fig.13 Relation between amplitude and driving voltage
[1]   韩雷, 王福亮, 隆志力, 等. 微电子封装超声键合机理与技术[M]. 北京: 科学出版社, 2014.
[2]   田艳红, 孔令超, 王春青 芯片互连超声键合技术连接机制探讨[J]. 电子工艺技术, 2017, 28 (1): 1- 9
TIAN Yan-hong, KONG Ling-chao, WANG Chun-qing Discussion on the connection mechanism of ultrasonic bonding technology for chip interconnection[J]. Electronic Technology, 2017, 28 (1): 1- 9
[3]   刘丽君, 赵修臣, 李红, 等 热超声金丝键合工艺及其可靠性研究[J]. 新技术新工艺, 2018, 7 (3): 27- 31
LIU Li-jun, ZHAO Xiu-chen, LI Hong, et al Research on thermosonic gold chip bonding technology and reliability[J]. New Technology and New Process, 2018, 7 (3): 27- 31
[4]   计红军, 李明雨, 王春青 超声芯片键合点形态及界面金属学特征[J]. 电子工艺技术, 2005, 38 (5): 249- 253
JI Hong-jun, LI Ming-yu, WANG Chun-qing Morphology of bonding points and interface metallography of ultrasonic leads[J]. Electronic Technology, 2005, 38 (5): 249- 253
doi: 10.3969/j.issn.1001-3474.2005.05.001
[5]   PAUL C W, LI H L, CHAN H L, et al Smart ultrasonic transducer for chip-bonding applications[J]. Materials Chemistry and Physics, 2002, 75 (1): 95- 100
[6]   TSUJINO J, SANO T, HAYATO O, et al Complex vibration ultrasonic welding systems with large area welding tips[J]. Ultrasonics, 2002, 40 (1): 361- 364
[7]   LEUNG M L H, LAI-WAH H C, CHOU-KEE P L. Comparison of bonding defects for longitudinal and transverse thermosonic flip-chip [C]//2003 Electronics Packaging Technology Conference. Singapore: IEEE, 2003: 350-355.
[8]   李庆良, 叶玟鋑, 关家胜, 等. 具有改良刚度的带凸缘的换能器: 200710187837.1 [P]. 2008-05-28.
[9]   吴霄, 秦慧斌, 付俊帆, 等 大负载纵弯谐振变幅器谐振特性的研究与试验[J]. 机械设计与制造, 2018, 24 (7): 83- 86
WU Xiao, QIN Hui-bin, FU Jun-fan, et al Research and test of resonance characteristics of large load longitudinal and flexural resonant amplitude transformer[J]. Mechanical Design and Manufacturing, 2018, 24 (7): 83- 86
doi: 10.3969/j.issn.1001-3997.2018.07.024
[10]   LIU Ying-xiang, SHEN Qiang-qiang, SHI Shen-jun, et al Research on a novel exciting method for sandwich transducer operating in longitudinal-flexural hybrid modes[J]. Sensors, 2017, 17 (7): 1510
doi: 10.3390/s17071510
[11]   赵淳生. 超声波电机技术与应用[M]. 北京: 科学出版社, 2007.
[12]   MELCHOR J, RUS G Torsional ultrasonic transducer computational design optimization[J]. Ultrasonics, 2014, 54 (7): 1950- 1962
doi: 10.1016/j.ultras.2014.05.001
[13]   OR S W. High frequency transducer for ultrasonic bonding [D]. Hong Kong: The Hong Kong Polytechnic University, 2001.
[14]   林书玉 夹心式弯曲振动压电超声换能器的研究[J]. 声学技术, 1993, 5 (4): 26- 30
LIN Shu-yu Study on piezoeleetric ceramic sandwiched transducers of ultrasonic flexural vibration[J]. Technical Acoustics, 1993, 5 (4): 26- 30
[15]   王福军, 赵兴玉, 张大卫 热超声键合压电换能器的动力学特性[J]. 焊接学报, 2008, 22 (10): 69- 72
WANG Fu-jun, ZHAO Xing-yu, ZHANG Da-wei Dynamic characteristics of thermosonic bonded piezoelectric transducer[J]. Transactions of the China Welding Institution, 2008, 22 (10): 69- 72
doi: 10.3321/j.issn:0253-360X.2008.10.018
[16]   隆志力. 芯片键合换能系统动力学特性与优化设计研究[D]. 长沙: 中南大学, 2007.
LONG Zhi-li. Research on dynamic characteristics and optimization design of ultrasonic transducer system in IC bonding [D]. Changsha: Central South University, 2007.
[1] Jin WANG,Xiang-kun WANG,Jian-hui FU,Guo-dong LU,Chao-chao JIN,Yan-zhi CHEN. Static and dynamic characteristic analysis and structure optimization for crossbeam structure of heavy-duty truss robot[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 124-134.
[2] Yang-jian LI,Wei HE,Hong-wei LIU,Wei LI,Yong-gang LIN,Ya-jing GU. Active damping control for drive train of horizontal-axis tidal current turbines[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1355-1361.
[3] GUAN Fu-ling,DAI Lu. Dynamic analysis and test research
of double-ring deployable truss structure
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(9): 1605-1610.
[4] LEI Zhi-li, AI Xin, CUI Ming-yong, LIU Xiao. Simulation on series harmonic resonance of microgrid
based on modal assessment method
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(1): 178-184.
[5] JIANG Gang, HE Wen, ZHENG Jian-Yi. Mechanism and experimental research on high frequency vibratory stress relief[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(7): 1269-1272.