Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (3): 499-511    DOI: 10.3785/j.issn.1008-973X.2020.03.010
Civil Engineering     
Pushover test study of masonry structure restrained by steel-tube-bundle shear walls
Yong CHEN1(),Yong-quan LI1,Chong-lei XIE2,Kuang-liang QIAN1,*(),Ye-sheng ZHANG2,Peng-yun CHENG1,Xuan-zuo YE2
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Greentown China Holdings Limited, Hangzhou 310007, China
Download: HTML     PDF(2328KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Two masonry structures with different boundary restraints were designed and manufactured, and experimental study was then carried out. By using the refined finite element model (FEM), the mechanical behavior of the masonry structures subjected to horizontal loading was analyzed and compared with the experimental results to verify the FEM. Suitability assessment of the two equivalent strut models for masonry structure was carried out. The experimental study and theoretical analysis show that, under the boundary restraint of steel-tube-bundle shear wall, the failure of the masonry structure was initiated by the separation from the surrounding constraints, and then the inside diagonal cracking formed. Furthermore, the masonry structure performed significant diagonal bracing effect. In comparison with the single-strut model, the three-strut model with appropriate parameters can accurately reflect the mechanical characteristics of the masonry structure under lateral load.



Key wordsmasonry structure      steel-tube-bundle shear wall      pushover test      finite element analysis      mechanical performance      equivalent strut model     
Received: 29 January 2019      Published: 05 March 2020
CLC:  TU 398  
Corresponding Authors: Kuang-liang QIAN     E-mail: cecheny@zju.edu.cn;qklcivil@zju.edu.cn
Cite this article:

Yong CHEN,Yong-quan LI,Chong-lei XIE,Kuang-liang QIAN,Ye-sheng ZHANG,Peng-yun CHENG,Xuan-zuo YE. Pushover test study of masonry structure restrained by steel-tube-bundle shear walls. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 499-511.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.03.010     OR     http://www.zjujournals.com/eng/Y2020/V54/I3/499


钢管束剪力墙约束下砌体结构推覆试验研究

设计制作2个具有不同边缘构件的钢管束剪力墙-砌体结构试件,并开展试验研究. 利用精细化有限元模型,分析2种边缘构件下的钢管束剪力墙-砌体结构在水平荷载作用下的力学行为,并与试验结果进行比较,验证有限元模型的可靠性. 对砌体结构的2种等效简化模型进行适用性分析. 试验和理论分析结果表明,当以钢管束剪力墙作为边缘构件时,砌体结构破坏过程表现为其先与周边约束脱开,砌体结构内部形成斜裂缝后破坏. 砌体结构具有明显的斜撑效应. 相较于单压杆模型,选用合适参数的三压杆模型可以准确反映砌体结构在侧向荷载作用下的受力特征.


关键词: 砌体结构,  钢管束剪力墙,  推覆试验,  有限元分析,  力学性能,  等效斜撑模型 
Fig.1 Geometric dimensioning of specimens of GSQ1 and GSQ2
Fig.2 Diagram for connection of steel-tube-bundle shear wall and masonry wall
Fig.3 Photograph for connection of steel-tube-bundle shear wall and masonry wall
Fig.4 Diagram of test loading and lateral support
Fig.5 Photograph of Specimen GSQ1
Fig.6 Layout of displacement transducers
试件 初裂状态 斜裂缝出现 最终破坏
F/kN /mm θ/rad F/kN /mm F/kN /mm θ/rad
GSQ1 404 1.32 1/2 537 800 3.30 3 480 44.68 1/75
GSQ2 407 1.70 1/1 971 700 4.32 2 400 50.03 1/67
Tab.1 Loads and displacements results of specimens at different phases
Fig.7 Crack distribution diagram of masonry walls of specimens of GSQ1 and GSQ2
Fig.8 Relative displacement between front steel-tube-bundle shear wall and masonry wall varies with lateral loading
Fig.9 Load-displacement curves of specimens of GSQ1 and GSQ2
试件 K0 Ki Kc Kf
GSQ1 305 303 242.4 78
GSQ2 230 235 162 48
Tab.2 Horizontal lateral stiffness of specimens at different phases kN/mm
Fig.10 Degradation curves of horizontal lateral stiffness of specimens of GSQ1 and GSQ2
材料类别 E/MPa υ fy/MPa fu/MPa
钢材 19 200 0.3 429 642
Tab.3 Material properties of Q345 steel
材料类别 E/MPa υ εy fc/
MPa
ft/
MPa
η
张开裂缝 闭合裂缝
烧结多孔砖 19 500 0.17 0.001 5 17.00 1.70 0.200 0.800
砂浆 3 520 0.24 0.002 0 4.10 0.41 0.500 0.950
混凝土 25 500 0.20 0.002 0 41.50 4.15 0.125 0.950
Tab.4 Material properties of concrete,brick and mortar
Fig.11 Mesh of finite element model for masonry
Fig.12 Finite element models of specimens of GSQ1 and GSQ2
Fig.13 First principal stress of masonry of specimen GSQ1 before appearance of diagonal cracks
Fig.14 First principal stress of masonry of specimen GSQ1 at failure
Fig.15 Cracking and deformation of specimen GSQ1 obtained by finite element analysis
Fig.16 Cracking and deformation of GSQ2 obtained by finite element analysis
Fig.17 Load-displacement curves obtained by test and finite element analysis
Fig.18 Diagram of zone in masonry structure subjected to shear and pressure
Fig.19 Equivalent single-strut model
Fig.20 Equivalent three-strut model
试件 E / MPa w / mm 三压杆
Mpj / (N·m) Mpc / (N·m) Mpb / (N·m) hc / mm lb / mm A / mm2
GSQ1 3 116 1 793 4.02×106 3.63×109 4.02×106 51 572 3 509 171 157
GSQ2 3 116 1 382 2.97×105 2.97×105 4.02×106 1 139 1 676 271 706
GSQ3 3 116 880 2.97×105 2.97×105 4.02×106 1 139 1 676 271 706
Tab.5 Calculation parameters for equivalent single-strut model and equivalent three-strut model
Fig.21 Load-displacement curves based on different finite element models of specimens
[1]   陈芳, 刘重阳 钢管束混凝土组合结构在高层钢结构住宅中的应用[J]. 住宅产业, 2016, 187 (5): 41- 46
CHEN Fang, LIU Chong-yang Application of steel tube bundle concrete composite structure in high-rise steel structure residence[J]. Housing Industry, 2016, 187 (5): 41- 46
[2]   陈志华, 姜玉挺, 张晓萌, 等 钢管束组合剪力墙变形性能研究及有限元分析[J]. 振动与冲击, 2017, 36 (19): 44- 53
CHEN Zhi-hua, JIANG Yu-ting, ZHANG Xiao-meng, et al Deformation property and finite element analysis of a new type of steel tube bundle composite shear walls[J]. Journal of Vibration and Shock, 2017, 36 (19): 44- 53
[3]   POLYAKOV S V On the interaction between masonry filler walls and enclosing frame when loaded in the plane of the wall[J]. Earthquake Engineering, 1960, 2 (3): 36- 42
[4]   SMITH B S Lateral stiffness of infilled frames[J]. Journal of the Structural Division, 1962, 88 (6): 183- 199
[5]   El-DAKHAKHNI W W, ELGAALY M, HAMID A A Three-strut model for concrete masonry-infilled steel frames[J]. Journal of Structural Engineering, 2003, 129 (2): 177- 185
doi: 10.1061/(ASCE)0733-9445(2003)129:2(177)
[6]   曹万林, 王光远 轻质填充墙异型柱框架弹性阶段地震作用计算[J]. 地震工程与工程振动, 1997, 17 (3): 2- 3
CAO Wan-lin, WANG Guang-yuan Calculation of earthquake action on frame with special-shaped columns and light-weight filled walls at elastic stage[J]. Earthquake Engineering and Engineering Vibration, 1997, 17 (3): 2- 3
[7]   DAWE J L, SEAH C K Behaviour of masonry infilled steel frames[J]. Canadian Journal of Civil Engineering, 1989, 16 (6): 865- 876
doi: 10.1139/l89-129
[8]   MEHRABI A B, SHING P B, SCHULLER M P, et al Experimental evaluation of masonry-Infilled RC frames[J]. Journal of Structural Engineering, 1996, 122 (3): 228- 237
doi: 10.1061/(ASCE)0733-9445(1996)122:3(228)
[9]   JIANG H, LIU X, MAO J Full-scale experimental study on masonry infilled RC moment-resisting frames under cyclic loads[J]. Engineering Structures, 2015, 91: 70- 84
doi: 10.1016/j.engstruct.2015.02.008
[10]   谷倩, 彭波, 刘肖凡 钢框架—砌体填充墙结构三支杆模型有限元分析[J]. 武汉大学学报: 工学版, 2006, 39 (5): 30- 34
GU Qian, PENG Bo, LIU Xiao-fan Finite element analysis of three-strut model for masonry-infilled steel frames[J]. Engineering Journal of Wuhan University, 2006, 39 (5): 30- 34
[11]   李英民, 韩军, 刘立平 ANSYS在砌体结构非线性有限元分析中的应用研究[J]. 重庆建筑大学学报, 2006, 28 (5): 90- 96
LI Ying-min, HAN Jun, LIU Li-ping Application of ANSYS to finite element analysis for nonlinear masonry structures[J]. Journal of Chongqing Jianzhu University, 2006, 28 (5): 90- 96
[12]   孔璟常. 砌体填充墙RC框架结构平面内抗震性能数值模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
KONG Jing-chang. Numerical simulation for in-plane seismic performance of masonry-infilled RC frames[D]. Harbin: Harbin Institute of Technology, 2011.
[13]   TASNIMI A A, MOHEBKHAH A Investigation on the behavior of brick-infilled steel frames with openings, experimental and analytical approaches[J]. Engineering Structures, 2011, 33 (3): 968- 980
doi: 10.1016/j.engstruct.2010.12.018
[14]   MOGHADAM H A, MOHAMMADI M G, GHAEMIAN M Experimental and analytical investigation into crack strength determination of infilled steel frames[J]. Journal of Constructional Steel Research, 2006, 62 (12): 1341- 1352
doi: 10.1016/j.jcsr.2006.01.002
[15]   王广庆. 砌块填充墙的精细化模拟与等效斜撑建模[D]. 哈尔滨: 哈尔滨工业大学, 2016: 85-86.
WANG Guang-qing. Refined simulation and improved strut models of masonry block infills[D]. Harbin: Harbin Institute of Technology, 2016: 85-86.
[16]   缪志伟, 陆新征, 叶列平 分层壳单元在剪力墙结构有限元计算中的应用[J]. 建筑结构学报, 2006, 27 (S2): 932- 935
MIAO Zhi-wei, LU Xin-zheng, YE Lie-ping Applications of the multi-layer shell element in the finite element analysis of shear wall structures[J]. Journal of Building Structures, 2006, 27 (S2): 932- 935
[17]   ANSYS Theory Reference. Documentation for ANSYS 17.2[M]. Canonsburg: ANSYS Inc, 2016.
[18]   VERMELTFOORT A T Shape factors for calcium silicate and aircrete based on experimental results[J]. Masonry International, 2007, 20 (2): 75- 84
[19]   施楚贤. 砌体结构理论与设计[M]. 北京: 中国建筑工业出版社, 2003.
[20]   朱伯龙. 砌体结构设计原理[M]. 上海: 同济大学出版社, 1991.
[21]   刘桂秋, 高文双 混凝土砌块砌体墙受剪性能的有限元模拟[J]. 湖南大学学报: 自然科学版, 2013, 40 (2): 21- 25
LIU Gui-qiu, GAO Weng-shuang Finite element simulation of the shear behavior of concrete block masonry wall[J]. Journal of Hunan University: Natural Sciences, 2013, 40 (2): 21- 25
[22]   GB 50010-2010. 混凝土结构设计规范[S]. 北京: 中华人民共和国住房和城乡建设部, 2010.
[23]   刘桂秋. 砌体结构基本受力性能的研究[D]. 长沙: 湖南大学, 2005.
LIU Gui-qiu. The research on the basic mechanical behavior of masonry structure[D]. Changsha: Hunan University, 2005.
[24]   李国华, 郁银泉, 顾强 钢框架内填混凝土墙结构体系有限元分析[J]. 四川建筑科学研究, 2007, 33 (5): 17- 20
LI Guo-hua, YU Ying-quan, GU Qiang Finite element analysis for concrete infilled steel frame[J]. Sichuan Building Science, 2007, 33 (5): 17- 20
doi: 10.3969/j.issn.1008-1933.2007.05.005
[25]   GB 50003-2011. 砌体结构设计规范[S]. 北京: 中华人民共和国住房和城乡建设部, 2011.
[26]   TE-CHANG L, KWOK-HUNG K Nonlinear behaviour of non-integral infilled frames[J]. Computers and Structures, 1984, 18 (3): 551- 560
doi: 10.1016/0045-7949(84)90070-1
[27]   刘阳冰. 钢—混凝土组合结构体系抗震性能研究与地震易损性分析[D]. 北京: 清华大学, 2009: 23-25.
LIU Yang-bing. Research on seismic performance and fragility analysis for steel-concrete composite structural systems[D]. Beijing: Tsinghua University, 2009: 23-25.
[1] Guo-hui SHEN,Yu-nan BAO,Yong GUO,Gang SONG,Yi-wen WANG. Along-line wind loads and distribution patterns of transmission lines[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1658-1665.
[2] Kai-jun LOU,Feng YU,Tang-dai XIA,Jian MA. Stability analysis of diaphragm wall retained structure in clay[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1697-1705.
[3] Zheng ZHANG,Hao ZHANG,Hao CHAI,Hua-ping WU,Shao-fei JIANG. Design and performance analysis of variable stiffness multi-stable composite laminate structure[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1341-1346.
[4] Li-guo WANG,Xu-dong SHAO,Jun-hui CAO,Yu-bao CHEN,Guang HE,Yang WANG. Performance of steel-ultrathin UHPC composite bridge deck based on ultra-short headed studs[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2027-2037.
[5] Shui-guang TONG,Jia-zhi MIAO,Zhe-ming TONG,Shun HE,Shu-feng XIANG,Xiang-hui SHUAI. Finite element analysis and optimization for static and dynamic characteristics of diesel forklift frame[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1637-1646.
[6] Shao-heng HE,Tang-dai XIA,Lian-xiang LI,Bing-qi YU,Ze-yong LIU. Influence of groundwater seepage on deformation of foundation pits with suspended impervious curtains[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 713-723.
[7] Wen-qiang DAI,Xu ZHENG,Zhi-yong HAO,Yi QIU. Prediction of high-speed train interior noise using energy finite element analysis[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2396-2403.
[8] XIA Yong-qiang, XIAO Nan. Initial rotational stiffness formula of semi-rigid joint with T-stub in beam-to-column connection[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1935-1942.
[9] WU Ke-xian, JIN Wei-liang, XIA Jin. Influence of load partial factors adjustment on design of masonry structures[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1901-1910.
[10] WANG Xing, XU Wu, ZHANG Xiao-jing, ZHANG Li-na, HU Ben-run. Numerical prediction and experimental verification of fatigue life of TC4 plate strengthened by cold expansion[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1610-1618.
[11] JIANG Nan, CHEN Min-you, XU Sheng-you, LAI Wei, GAO Bing. Thermal fatigue of IGBT module considering crack damage[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 825-833.
[12] CHEN Wei gang, DENG Hua,BAI Guangbo,DONG Shi lin, ZHU Zhong yi. Load bearing behavior of bearing joint of flat aluminum alloy lattice structures[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 831-840.
[13] HE Zhi ming, ZHANG Xiao jing, LIU Tian qi, YANG Shu xun. Numerical simulation of whole process of cold expansion in 300M steel lug[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(4): 783-791.
[14] BI Yun bo, LI Xia, YAN Wei miao, SHEN Li heng, ZHU Yu, FANG Wei. Pressure force optimization of press foot device for orbital drilling process[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(1): 102-110.
[15] WANG Jiao-jiao, SHI Yong-jiu, WANG Yuan-qing, PAN Peng, MAKINO Toshio, QI Xue. Experimental study on low yield point steel LYP100 under cyclic loading[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1401-1409.