Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (8): 1548-1557    DOI: 10.3785/j.issn.1008-973X.2021.08.016
    
Design and modification of harmonic double circular arc tooth profile based on finite element method
Xing-yu ZENG(),Jun-yang LI*(),Jia-xu WANG,Ting TANG,Cong LI
State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China
Download: HTML     PDF(3378KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

There is a certain deviation between the deformation of the flexspline of the harmonic drive and the linear deformation according to the actual working conditions. The multi-body contact finite element analysis was carried out using ANSYS Workbench to explore the influence and sensitivity of the structural parameters of the flexspline on the actual radial deformation of the flexspline. Results show that the tooth width, the thickness, the length, and the distance between the wave generator and the bottom of the flexspline, etc., all have a certain degree of influence on the radial deformation of the flexspline. Among them, the distance between the wave generator and the bottom of the cup had the greatest influence on the radial deformation of the flexspline, and the sensitivity was the highest, followed by the tooth width and the length. And the thickness had the least influence on the radial deformation of the flexspline. The modified kinematics method and the precise rotation angle relationship of the flexspline were used to design the non-common tangent double-arc tooth profile based on the actual deformation of the flexspline, and combined with MATLAB parametric programming to perform three maintenance on the flexspline tooth profile, and perform finite element simulation on the solid model. Analysis results show that the maximum stress of the flexspline designed and modified by the finite element method (FEM) was reduced by 925 MPa than that without modification, and 144 MPa less than the modified and designed stress by the linear method. The circumferential stress of each section of the flexspline designed and modified by FEM was also lower than that of the linear method.



Key wordsflexspline deformation      structural parameters      finite element analysis      tooth profile design and modification      flexspline stress     
Received: 12 August 2020      Published: 01 September 2021
CLC:  TH 132.43  
Fund:  国家重点研发计划资助项目(2018YFB1304800);广东省重点领域研发计划资助项目(2020B090926002)
Corresponding Authors: Jun-yang LI     E-mail: 479376471@qq.com;lijunyang1982@sina.com
Cite this article:

Xing-yu ZENG,Jun-yang LI,Jia-xu WANG,Ting TANG,Cong LI. Design and modification of harmonic double circular arc tooth profile based on finite element method. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1548-1557.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.08.016     OR     https://www.zjujournals.com/eng/Y2021/V55/I8/1548


基于有限元法的谐波双圆弧齿廓设计和修形

针对实际工况中,谐波传动的柔轮的实际变形与线性假设变形存在一定偏差的问题,利用ANSYS Workbench进行多体接触有限元分析,探究柔轮的结构参数对柔轮有限元径向变形的影响规律和敏感度. 结果表明:齿宽、壁厚、筒长、波发生器与柔轮杯底距离等参数都对柔轮径向变形有一定程度的影响,其中波发生器与杯底的距离对柔轮径向变形影响程度最大,敏感度最高,其次是齿宽和筒长,壁厚对柔轮径向变形的影响程度最小. 基于柔轮的有限元变形,采用改进运动学法和柔轮精确转角关系设计无公切线双圆弧齿廓,并结合MATLAB参数化编程对柔轮齿廓进行三维修形,对仿真实体模型进行有限元分析,结果表明:有限元法设计修形的柔轮最大应力比未修形时减小925 MPa,比线性法设计修形减少144 MPa,有限元法设计修形的柔轮齿各截面的周向应力也低于线性法设计修形.


关键词: 柔轮变形,  结构参数,  有限元分析,  齿廓设计修形,  柔轮应力 
Fig.1 Coordinate system of double circular arc tooth profile
Fig.2 Harmonic drive coordinate system
Fig.3 Axial deflection diagram of flexspline tooth
Fig.4 Deformation state diagram of flexspline
Fig.5 Schematic diagram of flexspline tooth modification
Fig.6 Schematic diagram of flexspline structure
Fig.7 Radial deformation diagram of long and short axis of flexspline with different tooth widths
Fig.8 Influence of tooth width on difference between finite element and linear assumed radial deformation of flexspline
Fig.9 Radial deformation diagram of long and short axis of flexspline with different thicknesses
Fig.10 Influence of thickness on difference between finite element and linear assumed radial deformation of flexspline
Fig.11 Radial deformation of long and short axis of flexspline with different lengths
Fig.12 Influence of length on difference between finite element and linear assumed radial deformation of flexspline
Fig.13 Radial deformation of long and short axis of flexspline with different locations of wave generator
Fig.14 Influence of location of wave generator on difference between finite element and linear assumed radial deformation of flexspline
参数 符号 数值/mm 参数 符号 数值/mm
齿宽 b 10.8 柔轮内壁直径 d 61.32
筒长 L 30.7 筒体壁厚 t 0.38
齿根壁厚 tc 0.66 波发生器距离杯底的距离 η 21.2
Tab.1 Key structural parameters of flexspline
参数 柔轮齿廓参数 刚轮齿廓参数
ha*/mm hf*/mm xa/mm ya/mm ρa/mm t1/mm γ/(°) xf/mm yf/mm ρf/mm ha*/mm hf*/mm xa/mm ya/mm ρa/mm ρf/mm xf/mm yf/mm
数值/mm 0.7 0.9 0.396 3 0.608 4 0.63 0.653 6 6 0.876 7 0.742 2 0.65 0.65 0.90 0.871 9 1.154 4 0.644 9 0.631 9 0.397 9 1.021 7
Tab.2 Tooth profile parameters of theoretical method
参数 柔轮齿廓参数 刚轮齿廓参数
ha*/mm hf*/mm xa/mm ya/mm ρa/mm t1/mm γ/(°) xf/mm yf/mm ρf/mm ha*/mm hf*/mm xa/mm ya/mm ρa/mm ρf/mm xf/mm yf/mm
数值/mm 0.7 0.9 0.396 3 0.608 4 0.63 0.653 6 6 0.876 7 0.742 2 0.65 0.65 0.90 0.874 8 1.181 7 0.647 3 0.639 5 0.404 6 1.044
Tab.3 Tooth profile parameters of FEM
Fig.15 Track diagram of tooth movement of flexspline before modification
Fig.16 Track diagram of tooth movement of front section 1 after modification
Fig.17 3D view of tooth profile of flexspline after modification
Fig.18 Comparison chart of 3D axial modification amount of flexspline tooth
部件 材料 E/GPa μ ρ/(kg·m?3
柔轮 30CrMnSiA 196 0.300 775 0
刚轮 45 210 0.269 785 0
波发生器 45 210 0.269 785 0
Tab.4 Material performance parameters of harmonic gear
Fig.19 Stress comparison of flexspline with different design and modification methods
Fig.20 Circumferential stress distribution diagram of flexspline
[1]   M. H. 伊万诺夫. 谐波齿轮传动[M]. 沈允文, 李克美, 译. 北京: 国防工业出版社, 1987.
[2]   沈允文, 叶庆泰. 谐波齿轮传动的理论和设计[M]. 北京: 机械工业出版社, 1985.
[3]   王迪. 一种新型结构的谐波减速器研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.
WANG Di. Research on a new structure of harmonic reducer[D]. Harbin: Harbin Institute of Technology, 2009.
[4]   SAHOO V, MAITI R Load sharing by tooth pairs in involute toothed harmonic drive with conventional wave generator cam[J]. Meccanica, 2018, 53 (1): 373- 394
[5]   WANG S, JIANG G D, MEI X S, et al A rapid stress calculation method for short flexspline harmonic drive[J]. Engineering Computations, 2019, 36 (6): 1852- 1867
doi: 10.1108/EC-08-2018-0364
[6]   高海波, 李志刚, 邓宗全, 等 基于ANSYS的杯形柔轮结构参数对柔轮应力的敏感度分析[J]. 机械工程学报, 2010, 46 (5): 1- 7
GAO Hai-bo, LI Zhi-gang, DENG Zong-quan, et al Sensitivity analysis of cup-shaped flexible wheel structure parameters to flexible wheel stress based on ANSYS[J]. Journal of Mechanical Engineering, 2010, 46 (5): 1- 7
doi: 10.3901/JME.2010.05.001
[7]   董惠敏, 李德举, 齐书学, 等 基于正交试验和有限元分析的谐波传动柔轮杯体结构优化[J]. 机械传动, 2013, 37 (1): 34- 38
DONG Hui-min, LI De-ju, QI Shu-xue, et al Optimization of cup body structure of harmonic drive flexspline based on orthogonal experiment and finite element analysis[J]. Mechanical Transmission, 2013, 37 (1): 34- 38
[8]   辛洪兵 双圆弧谐波齿轮传动基本齿廓设计[J]. 中国机械工程, 2011, 22 (6): 656- 662
XIN Hong-bing Design for basic rack of harmonic drive with double-circular-arc tooth profile[J]. China Mechanical Engineering, 2011, 22 (6): 656- 662
[9]   沈允文 论谐波齿轮传动的齿形[J]. 齿轮, 1986, (4): 51- 56
SHEN Yun-wen On the tooth profile of harmonic gear transmission[J]. Gear, 1986, (4): 51- 56
[10]   王家序, 周祥祥, 李俊阳, 等 公切线式双圆弧齿廓谐波齿轮传动设计[J]. 湖南大学学报:自科版, 2016, 43 (2): 56- 63
WANG Jia-xu, ZHOU Xiang-xiang, LI Jun-yang, et al Design of common tangent double circular arc tooth profile harmonic gear transmission[J]. Journal of Hunan University: Self Science Edition, 2016, 43 (2): 56- 63
[11]   ISHIKAWA S, TAKIZAWA N. Wave gear drive with contin- uous meshing, high ratcheting torque tooth pro-file: USA, 7694607 B2 [P]. (2010-04-13).
[12]   王家序, 周祥祥, 李俊阳, 等 杯形柔轮谐波传动三维双圆弧齿廓设计[J]. 浙江大学学报: 工学版, 2016, 50 (4): 616- 624
WANG Jia-xu, ZHOU Xiang-xiang, LI Jun-yang, et al Three -dimensional double arc tooth profile design of cup-shaped flexible wheel harmonic drive[J]. Journal of Zhejiang University: Engineering Science Edition, 2016, 50 (4): 616- 624
[13]   张立勇, 刘新猛, 王长路, 等 径向变形量对谐波减速器啮合特性及柔轮应力的影响分析[J]. 机械传动, 2017, 41 (9): 166- 169
ZHANG Li-yong, LIU Xin-meng, WANG Chang-lu, et al Analysis of the influence of radial deformation on the meshing characteristics and flexspline stress of harmonic reducer[J]. Mechanical Transmission, 2017, 41 (9): 166- 169
[14]   吴上生, 孙韩磊, 杨琪, 等 谐波传动柔轮空间齿廓设计与制造工艺[J]. 华南理工大学学报: 自然科学版, 2019, 47 (1): 32- 38
WU Shang-sheng, SUN Han-lei, YANG Qi, et al Design and manufacturing technology of flexspline's spatial tooth profile in harmonic drive[J]. Journal of South China University of Technology: Natural Science Edition, 2019, 47 (1): 32- 38
[15]   蒋倩倩, 弓安, 李晓峰, 等 谐波传动中凸轮径向变形量对齿廓修形的影响[J]. 机械传动, 2019, 43 (6): 1- 5
JIANG Qian-qian, GONG An, LI Xiao-feng, et al The influence of cam radial deformation on tooth profile modification in harmonic drive[J]. Mechanical Transmission, 2019, 43 (6): 1- 5
[16]   CHEN Xiao-xia, LIU Shu-zhong, XING Jing-zhong, et al The parametric design of double-circular-arc tooth profile and its influence on the functional backlash of harmonic drive[J]. Mechanism and Machine Theory, 2014, 73 (1): 1- 24
[17]   周卫东. 渐开线谐波齿轮传动齿廓参数优化及动态仿真[D]. 大连: 大连理工大学, 2008.
ZHOU Wei-dong. Tooth profile parameter optimization and dynamic simulation of involute harmonic gear transmission[D]. Dalian: Dalian University of Technology, 2008.
[1] Jie WANG,Zhao LI,Zi-ran LI. Research on tread wear behavior of all steel radial truck tire[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1615-1624.
[2] Wei WANG,Hao-tian ZHAO,Chao-chao QUAN,Hong-lai SONG,Yu LI,Yi-xiang ZHOU. Shear bearing capacity of vertical corrugated steel plate shear wall with replaceable toe[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1407-1418.
[3] Ming-feng HUANG,Xin-rui WEI,He-kai YE,Jian-yun YE,Wen-juan LOU. Wind-induced response of crane structure with double flat arms for long-span transmission towers[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1351-1360.
[4] Jun-xia JIANG,Hai-peng LIAO. Stiffness modeling and structure optimization of heavy-duty intelligent stacking equipment[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1948-1959.
[5] Guo-hui SHEN,Yu-nan BAO,Yong GUO,Gang SONG,Yi-wen WANG. Along-line wind loads and distribution patterns of transmission lines[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1658-1665.
[6] Kai-jun LOU,Feng YU,Tang-dai XIA,Jian MA. Stability analysis of diaphragm wall retained structure in clay[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1697-1705.
[7] Zheng ZHANG,Hao ZHANG,Hao CHAI,Hua-ping WU,Shao-fei JIANG. Design and performance analysis of variable stiffness multi-stable composite laminate structure[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1341-1346.
[8] Yong CHEN,Yong-quan LI,Chong-lei XIE,Kuang-liang QIAN,Ye-sheng ZHANG,Peng-yun CHENG,Xuan-zuo YE. Pushover test study of masonry structure restrained by steel-tube-bundle shear walls[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 499-511.
[9] Li-guo WANG,Xu-dong SHAO,Jun-hui CAO,Yu-bao CHEN,Guang HE,Yang WANG. Performance of steel-ultrathin UHPC composite bridge deck based on ultra-short headed studs[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2027-2037.
[10] Shui-guang TONG,Jia-zhi MIAO,Zhe-ming TONG,Shun HE,Shu-feng XIANG,Xiang-hui SHUAI. Finite element analysis and optimization for static and dynamic characteristics of diesel forklift frame[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1637-1646.
[11] Shao-heng HE,Tang-dai XIA,Lian-xiang LI,Bing-qi YU,Ze-yong LIU. Influence of groundwater seepage on deformation of foundation pits with suspended impervious curtains[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 713-723.
[12] Wen-qiang DAI,Xu ZHENG,Zhi-yong HAO,Yi QIU. Prediction of high-speed train interior noise using energy finite element analysis[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2396-2403.
[13] XIA Yong-qiang, XIAO Nan. Initial rotational stiffness formula of semi-rigid joint with T-stub in beam-to-column connection[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1935-1942.
[14] WANG Xing, XU Wu, ZHANG Xiao-jing, ZHANG Li-na, HU Ben-run. Numerical prediction and experimental verification of fatigue life of TC4 plate strengthened by cold expansion[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1610-1618.
[15] JIANG Nan, CHEN Min-you, XU Sheng-you, LAI Wei, GAO Bing. Thermal fatigue of IGBT module considering crack damage[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 825-833.