Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (8): 1407-1418    DOI: 10.3785/j.issn.1008-973X.2021.08.001
    
Shear bearing capacity of vertical corrugated steel plate shear wall with replaceable toe
Wei WANG(),Hao-tian ZHAO,Chao-chao QUAN,Hong-lai SONG,Yu LI,Yi-xiang ZHOU
School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
Download: HTML     PDF(1936KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The toe of steel plate shear wall structure was prone to stress concentration, resulting in local buckling and brittle failure under earthquake. A new type of vertical corrugated steel plate shear wall with replaceable toe was proposed. The seismic performance of vertical corrugated steel plate shear wall with replaceable toe was compared with that of traditional vertical corrugated steel plate shear wall through quasi-static test. The failure mode, the hysteretic behavior, the ductility and energy dissipation capacity, the strength and stiffness degradation and the replaceability of replaceable toe dampers of vertical corrugated steel plate shear wall with replaceable toe were studied. Test results showed that, compared with the traditional vertical corrugated steel plate shear wall, the installation of dampers can not only significantly improve the lateral stiffness of the vertical corrugated steel plate shear wall with replaceable toe, but also further enhance its ability to resist out-of-plane instability. The influence of thickness of corrugated steel plate, corrugated angle and thickness of damper web on shear capacity of vertical corrugated steel plate shear wall with replaceable toe was discussed in detail by using ABAQUS finite element software, and the shear capacity formula of vertical corrugated steel plate shear wall with replaceable toe was given.



Key wordsvertical corrugated steel plate shear wall      energy dissipation damper      quasi-static testing      finite element analysis      formula of shear bearing capacity     
Received: 12 March 2021      Published: 01 September 2021
CLC:  TU 391  
Fund:  国家自然科学基金资助项目(51578449,51878548);陕西省自然科学基础研究计划重点资助项目(2018JZ5013)
Cite this article:

Wei WANG,Hao-tian ZHAO,Chao-chao QUAN,Hong-lai SONG,Yu LI,Yi-xiang ZHOU. Shear bearing capacity of vertical corrugated steel plate shear wall with replaceable toe. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1407-1418.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.08.001     OR     https://www.zjujournals.com/eng/Y2021/V55/I8/1407


墙趾可更换竖波钢板剪力墙抗剪承载力

针对钢板剪力墙在地震作用下墙趾容易出现应力集中,导致剪力墙局部屈曲和脆性破坏的问题,设计墙趾可更换竖波钢板剪力墙,即在剪力墙墙趾塑性区安装耗能阻尼器. 通过拟静力试验将墙趾可更换竖波钢板剪力墙与传统竖波钢板剪力墙的抗震性能进行对比. 研究墙趾可更换竖波钢板剪力墙的破坏模式、滞回性能、延性和耗能能力、强度和刚度退化以及墙趾阻尼器的可更换性. 试验结果表明:与传统竖波钢板剪力墙相比,墙趾阻尼器的安装不仅可以显著提升墙趾可更换竖波钢板剪力墙的抗侧刚度,也能进一步加强其抵抗面外失稳的能力. 利用ABAQUS有限元软件详细讨论墙趾可更换竖波钢板剪力墙波形钢板厚度、波角、阻尼器腹板厚度对抗剪承载力的影响,并给出墙趾可更换竖波钢板剪力墙的抗剪承载力计算公式.


关键词: 竖波钢板剪力墙,  耗能阻尼器,  拟静力试验,  有限元分析,  抗剪承载力公式 
Fig.1 Specific structure and geometric dimension of CSPSW
Fig.2 Specific structure and geometric dimension of RCSPSW
Fig.3 Specific structure and geometric dimension of damper
Fig.4 Working mechanism of damper
ts/mm E/(105 MPa) fy/MPa fu/MPa
3 2.06 292.51 405.13
6 2.21 285.61 400.65
10 2.09 287.37 395.77
Tab.1 Material properties of steel specimens
Fig.5 Experiment loading device of shear wall specimen
Fig.6 Deformation phenomenon in failure stage of CSPSW
Fig.7 Deformation of RCSPSW during loading
Fig.8 Load-displacement hysteretic curves of CSPSW and RCSPSW
Fig.9 Comparison of load-displacement skeleton curves between CSPSW and RCSPSW
试件 加载方向 Fy/kN Δy/mm Fu/kN Δu/mm Fd/kN Δd/mm λ Δd/Δy
CSPSW 351.8 25.19 365.70 28.51 290.10 34.73 1/61 1.378
?373.1 ?31.15 ?393.30 ?28.51 ?320.60 ?38.01 1/55 1.221
平均 362.4 28.17 379.50 28.51 305.30 36.37 1/58 1.299
RCSPSW
更换前
350.1 12.86 405.60 23.71 ? ? ? ?
?346.3 ?14.11 ?395.33 ?23.71 ? ? ? ?
平均 348.1 13.48 400.40 23.71 ? ? ? ?
RCSPSW
更换后
332.1 10.26 370.10 14.06 299.70 27.72 1/77 2.711
?275.7 ?11.23 ?317.20 ?14.05 ?233.30 ?29.37 1/72 2.316
平均 303.9 10.75 343.60 14.06 266.50 28.55 1/75 2.508
Tab.2 Characteristic points and displacement ductility coefficient of specimens
Fig.10 Calculation of equivalent viscosity damping coefficient
Fig.11 Equivalent viscous damping coefficient-hysteresis loop number curve
Fig.12 Comparison of stiffness degradation curves between CSPSW and RCSPSW
Fig.13 Comparison of strength degradation curves between CSPSW and RCSPSW
Fig.14 Finite element model of RCSPSW
Fig.15 Comparison between finite element calculation and experimental results
类型 屈服点 峰值点 极限点
Fy/kN Δy/mm Fu/kN Δu/mm Fd/kN Δd/mm
模拟值 368.30 8.10 406.50 13.82 318.60 28.88
试验值 332.10 10.26 370.10 14.06 299.70 27.72
模拟值/试验值 1.11 0.79 1.09 0.98 1.06 1.04
Tab.3 Comparison of simulated and experimented characteristic points
模型编号 θc/(°) t/mm tc/mm
M45-3-6 45 3 6
M45-4-6 45 4 6
M45-5-6 45 5 6
M45-6-6 45 6 6
M45-7-6 45 7 6
M30-3-6 30 3 6
M60-3-6 60 3 6
M90-3-6 90 3 6
M45-3-3 45 3 3
M45-3-4 45 3 4
M45-3-5 45 3 5
M45-3-7 45 3 7
Tab.4 Parameters of RCSPSW finite element model
Fig.16 Geometric parameters of corrugated steel plate
Fig.17 Effect of corrugated angle of embedded vertical corrugated steel plate
Fig.18 Stress nephogram of embedded vertical corrugated steel plate      
Fig.19 Effect of embedded vertical corrugated steel plate thickness
Fig.20 Effect of damper web thickness
模型编号 Fu Fuf Fu/Fuf
M45-3-6 406.5 410.6 0.99
M45-4-6 544.4 533.7 1.02
M45-5-6 631.9 620.7 1.02
M45-6-6 697.1 689.1 1.01
M45-7-6 745.2 755.8 0.98
M30-3-6 337.2 337.8 0.99
M60-3-6 436.2 399.6 1.09
M90-3-6 425.4 380.7 1.11
M45-3-3 350.5 345.7 1.01
M45-3-4 375.8 375.9 1.00
M45-3-5 401.2 385.6 1.04
M45-3-7 451.9 434.0 1.04
M45-3-7 451.9 434.0 1.04
Tab.5 Comparison between simulated and calculated shear capacity of RCSPSW
[1]   王威, 张龙旭, 苏三庆, 等 波形钢板剪力墙抗震性能试验研究[J]. 建筑结构学报, 2018, 39 (5): 36- 44
WANG Wei, ZHANG Long-xu, SU San-qing, et al Experimental research on seismic behavior of corrugated steel plate shear wall[J]. Journal of Building Structures, 2018, 39 (5): 36- 44
[2]   SHON S, YOO M, LEE S An experimental study on the shear hysteresis and energy dissipation of the steel frame with a trapezoidal-corrugated steel plate[J]. Materials, 2017, 10 (3): 261
doi: 10.3390/ma10030261
[3]   赵秋红, 邱静, 李楠, 等 梯形波纹钢板剪力墙抗震性能试验研究[J]. 建筑结构学报, 2018, 39 (Suppl.2): 112- 120
ZHAO Qiu-hong, QIU Jing, LI Nan, et al Experimental study on seismic performance of trapezoidally corrugated steel plate shear walls[J]. Journal of Building Structures, 2018, 39 (Suppl.2): 112- 120
[4]   EMAMI F, MOFID M, VAFAI A Experimental study on cyclic behavior of trapezoidally corrugated steel shear walls[J]. Engineering Structures, 2013, 48: 750- 762
doi: 10.1016/j.engstruct.2012.11.028
[5]   谭平, 魏瑶, 李洋, 等 波纹钢板剪力墙抗震性能试验研究[J]. 土木工程学报, 2018, 51 (5): 8- 15
TAN Ping, WEI Yao, LI Yang, et al Experimental investigation on performance of corrugated steel plate shear wall[J]. China Civil Engineering Journal, 2018, 51 (5): 8- 15
[6]   QIU J, ZHAO Q H, YU C, et al Experimental studies on cyclic behavior of corrugated steel plate shear walls[J]. Journal of Structural Engineering, 2018, 144 (11): 04018200
doi: 10.1061/(ASCE)ST.1943-541X.0002165
[7]   SUN G, HE R, QIANG G, et al Cyclic behavior of partially-restrained steel frame with RC infill walls[J]. Journal of Constructional Steel Research, 2011, 67 (12): 1821- 1834
doi: 10.1016/j.jcsr.2011.06.002
[8]   翟长海, 刘文, 谢礼立 城市抗震韧性评估研究进展[J]. 建筑结构学报, 2018, 39 (9): 1- 9
ZHAI Chang-hai, LIU Wen, XIE Li-li Progress of research on city seismic resilience evaluation[J]. Journal of Building Structures, 2018, 39 (9): 1- 9
[9]   LIU Y, GUO Z, LIU X J, et al An innovative resilient rocking column with replaceable steel slit dampers: experimental program on seismic performance[J]. Engineering Structures, 2019, 183: 830- 840
doi: 10.1016/j.engstruct.2019.01.059
[10]   LIN C H, TSAI K C, QU B, et al Sub-structural pseudo-dynamic performance of two full-scale two-story steel plate shear walls[J]. Journal of Constructional Steel Research, 2010, 66 (12): 1467- 1482
doi: 10.1016/j.jcsr.2010.05.013
[11]   QU B, BRUNEAU M, LIN C H, et al Testing of full-scale two-story steel plate shear wall with reduced beam section connections and composite floors[J]. Journal of Structural Engineering, 2008, 134 (3): 364- 373
doi: 10.1061/(ASCE)0733-9445(2008)134:3(364)
[12]   CORTES G, LIU J Experimental evaluation of steel slit panel-frames for seismic resistance[J]. Journal of Constructional Steel Research, 2011, 67 (2): 181- 191
doi: 10.1016/j.jcsr.2010.08.002
[13]   OZAKI F, KAWAI Y, KANNO R, et al Damage-control systems using replaceable energy-dissipating steel fuses for cold-formed steel structures: seismic behavior by shake table tests[J]. Journal of Structural Engineering, 2013, 139 (5): 787- 795
doi: 10.1061/(ASCE)ST.1943-541X.0000638
[14]   郭彦林. 波形腹板钢结构设计原理与应用[M]. 北京: 科学出版社, 2015.
[15]   中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 钢结构设计标准: GB 50017—2017 [S]. 北京: 中国建筑工业出版社, 2017.
[16]   中华人民共和国住房和城乡建设部. 钢板剪力墙技术规程: JGJ/T 380—2015 [S]. 北京: 中国建筑工业出版社, 2015.
[17]   王威, 韩斌, 王万志, 等 带可更换阻尼器的波形钢板剪力墙抗震性能试验研究[J]. 中南大学学报, 2020, 51 (5): 1350- 1360
WANG Wei, HAN Bin, WANG Wan-zhi, et al Experimental study of seismic performance of corrugated steel plate shear wall with replaceable damper[J]. Journal of Central South University, 2020, 51 (5): 1350- 1360
[18]   国家市场监督管理总局, 中国国家标准化管理委员会. 钢及钢产品力学性能试验取样位置及式样制备: GB/T 2975—2018 [S]. 北京: 中国标准出版社, 2018.
[19]   中华人民共和国住房和城乡建设部. 建筑抗震试验规程: JGJ/T 101—2015 [S]. 北京: 中国建筑工业出版社, 2016.
[20]   中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 建筑抗震设计规范: GB 50011—2010[S]. 北京: 中国建筑工业出版社, 2016.
[21]   张淑云, 李卓宇, 马尤苏夫, 等 基于IDA的方钢管混凝土框架-SPSW核心筒结构地震易损性研究[J]. 世界地震工程, 2021, 37 (1): 48- 56
ZHANG Shu-yun, LI Zhuo-yu, MA Yousufu, et al Research on seismic vulnerability of concrete-filled rectangular tubular frame-SPSW core tube structure based on IDA method[J]. World Earthquake Engineering, 2021, 37 (1): 48- 56
[22]   王萌, 石永久, 王元清 考虑累积损伤退化的钢材等效本构模型研究[J]. 建筑结构学报, 2013, 34 (10): 73- 83
WANG Meng, SHI Yong-jiu, WANG Yuan-qing Study on equivalent constitutive model of steel with cumulative degradation and damage[J]. Journal of Building Structures, 2013, 34 (10): 73- 83
[23]   HASSANEIN M F, KHAROOB O F Shear buckling behavior of tapered bridge girders with steel corrugated webs[J]. Engineering Structures, 2014, 74: 157- 169
doi: 10.1016/j.engstruct.2014.05.021
[24]   GALAMBOS T V. Guide to stability design criteria for metal structures[M]. Hoboken: John Wiley & Sons, 1998.
[25]   朱力, 蔡建军, 聂建国 波形钢腹板的弹性剪切屈曲强度[J]. 工程力学, 2013, 30 (7): 40- 46
ZHU Li, CAI Jian-jun, NIE Jian-guo Elastic shear buckling strength of trapezoidal corrugated steel webs[J]. Engineering Mechanics, 2013, 30 (7): 40- 46
doi: 10.6052/j.issn.1000-4750.2012.02.0081
[26]   聂建国, 朱力, 唐亮 波形钢腹板的抗剪强度[J]. 土木工程学报, 2013, 46 (6): 97- 109
NIE Jian-guo, ZHU Li, TANG Liang Shear strength of trapezoidal corrugated steel webs[J]. China Civil Engineering Journal, 2013, 46 (6): 97- 109
[1] Jie WANG,Zhao LI,Zi-ran LI. Research on tread wear behavior of all steel radial truck tire[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1615-1624.
[2] Xing-yu ZENG,Jun-yang LI,Jia-xu WANG,Ting TANG,Cong LI. Design and modification of harmonic double circular arc tooth profile based on finite element method[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1548-1557.
[3] Ming-feng HUANG,Xin-rui WEI,He-kai YE,Jian-yun YE,Wen-juan LOU. Wind-induced response of crane structure with double flat arms for long-span transmission towers[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1351-1360.
[4] Jun-xia JIANG,Hai-peng LIAO. Stiffness modeling and structure optimization of heavy-duty intelligent stacking equipment[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1948-1959.
[5] Guo-hui SHEN,Yu-nan BAO,Yong GUO,Gang SONG,Yi-wen WANG. Along-line wind loads and distribution patterns of transmission lines[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1658-1665.
[6] Kai-jun LOU,Feng YU,Tang-dai XIA,Jian MA. Stability analysis of diaphragm wall retained structure in clay[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1697-1705.
[7] Zheng ZHANG,Hao ZHANG,Hao CHAI,Hua-ping WU,Shao-fei JIANG. Design and performance analysis of variable stiffness multi-stable composite laminate structure[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1341-1346.
[8] Yong CHEN,Yong-quan LI,Chong-lei XIE,Kuang-liang QIAN,Ye-sheng ZHANG,Peng-yun CHENG,Xuan-zuo YE. Pushover test study of masonry structure restrained by steel-tube-bundle shear walls[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 499-511.
[9] Li-guo WANG,Xu-dong SHAO,Jun-hui CAO,Yu-bao CHEN,Guang HE,Yang WANG. Performance of steel-ultrathin UHPC composite bridge deck based on ultra-short headed studs[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2027-2037.
[10] Shui-guang TONG,Jia-zhi MIAO,Zhe-ming TONG,Shun HE,Shu-feng XIANG,Xiang-hui SHUAI. Finite element analysis and optimization for static and dynamic characteristics of diesel forklift frame[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1637-1646.
[11] Shao-heng HE,Tang-dai XIA,Lian-xiang LI,Bing-qi YU,Ze-yong LIU. Influence of groundwater seepage on deformation of foundation pits with suspended impervious curtains[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 713-723.
[12] Wen-qiang DAI,Xu ZHENG,Zhi-yong HAO,Yi QIU. Prediction of high-speed train interior noise using energy finite element analysis[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2396-2403.
[13] XIA Yong-qiang, XIAO Nan. Initial rotational stiffness formula of semi-rigid joint with T-stub in beam-to-column connection[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1935-1942.
[14] WANG Xing, XU Wu, ZHANG Xiao-jing, ZHANG Li-na, HU Ben-run. Numerical prediction and experimental verification of fatigue life of TC4 plate strengthened by cold expansion[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1610-1618.
[15] JIANG Nan, CHEN Min-you, XU Sheng-you, LAI Wei, GAO Bing. Thermal fatigue of IGBT module considering crack damage[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 825-833.