Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (8): 1419-1425    DOI: 10.3785/j.issn.1008-973X.2021.08.002
    
Ventilation and heat transfer modeling in urban utility tunnel
Guo-qing HE1(),Wen-jie ZHAO1,Liang WANG2
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. CCDI (Suzhou) Exploration and Design Consultant Co. Ltd, Suzhou 215000, China
Download: HTML     PDF(1519KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An analytical model for ventilation and heat transfer in one typical urban utility tunnel (UUT) section in Suzhou was developed in order to aid the design and optimization of the ventilation system of the UUT for reduction in ventilation energy. The model includes the heat transfer among neighboring cabins, the conjugate heat transfer at the tunnel walls, and the thickness of the overlaying soil layer. The analytical model was validated by comparing it with the computational fluid dynamics (CFD) model. Results show that the internal heat source, ventilation, and soil temperature are the most important factors on cabin temperature, with the inter-cabin heat transfer a minor factor. The minimum ventilation rate to prevent over-heating of cabins is strongly dependent on the heat source strength, the inlet temperature (atmospheric temperature), and the soil temperature. Therefore, the minimum ventilation rate of UUT in other areas should be calculated according to the local meteorological conditions and the actual heat source intensity of the tunnel. The minimum ventilation rates, in air change rate, of the fully loaded cable cabin and the steam pipe cabin were 10 h?1 and 5 h?1, respectively, in the test section of UUT in Suzhou area. The minimum ventilation rate specified in the current code for UUT can meet the temperature control requirement for cabins without any heat sources. A similar analytical modelling approach can be used to analyze the ventilation requirement for UUT with other layouts of cabins.



Key wordsurban utility tunnel      ventilation      model      heat source      computational fluid dynamics (CFD)     
Received: 22 October 2020      Published: 01 September 2021
CLC:  TU 962  
Fund:  国家自然科学基金资助项目(51678518)
Cite this article:

Guo-qing HE,Wen-jie ZHAO,Liang WANG. Ventilation and heat transfer modeling in urban utility tunnel. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1419-1425.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.08.002     OR     https://www.zjujournals.com/eng/Y2021/V55/I8/1419


城市地下综合管廊通风传热模型

为了优化地下管廊的通风设计,降低运行费用,建立苏州某地下管廊(UUT)一典型段的通风传热的解析模型. 考虑舱间传热、空气和廊壁的耦合传热以及土壤边界厚度的影响. 通过与计算流体动力学(CFD)模型的比较,验证解析模型的可靠性. 结果表明,廊内热源、通风换热和向土壤传热是影响舱内温度的主要因素,舱间传热的影响相对较小. 考虑降温需求的各舱室最低通风量受热源强度、进风温度(大气温度)和土壤温度影响较大,实际管廊最低通风量的计算须结合当地气象条件和管廊热源强度. 对于苏州地区地下综合管廊试验段,满负荷运行的电力舱和热力舱的最低通风换气次数分别为10、5次/h,而无热源的水信舱和燃气舱均可以按现行规范要求的最低换气次数设计通风量. 对于其他布置形式的管廊,可以采用类似的解析模型进行分析.


关键词: 城市综合管廊,  通风,  模型,  热源,  计算流体动力学(CFD) 
Fig.1 Heat transfer modeling of an underground utility tunnel in Suzhou
Fig.2 Heat transfer schematic diagram of steam pipe
Fig.3 CFD modeling of underground utility tunnel and mesh schematic diagram
Fig.4 Measured temperature and humidity in cabin for water pipes
Fig.5 Calculated heat fluxes and temperatures in an underground utility tunnel in Suzhou
Fig.6 Temperature contour at exit of ventilated tunnel and at center section of cable cabin
模型 Qa/kW Qs/kW Qr/kW td/℃ tr/℃ ts/℃ tq/℃
解析模型 36.84 37.48 18.40 60.0 49.4 33.3 33.7
CFD模型 37.04 35.96 17.98 58.1 47.6 35.8 34.1
$\dfrac{\left|{\text{解析模型} }-{ {\rm{CFD} } }\right|}{\rm{CFD} } \times 100{{\text{%}}}$ ?1% 4% 2% 3% 4% ?7% ?1%
Tab.1 Comparisons of calculated heat fluxes and temperature between analytical model and CFD model for studied case
Fig.7 Relation between minimum ventilation rate and heat source strength in cable cabin
Fig.8 Effects of inlet and soil temperatures on minimum ventilation rate for cable cabin
Fig.9 Effect of ventilation rates on cabin temperature with non-heated cabin unventilated and ventilated
[1]   FAN C, CHEN J, ZHOU Y, et al Effects of fire location on the capacity of smoke exhaust from natural ventilation shafts in urban tunnels[J]. Fire and Materials, 2018, 42 (8): 974- 984
doi: 10.1002/fam.2683
[2]   QIAO Y K, PENG F L, SABRI S, et al Low carbon effects of urban underground space[J]. Sustainable Cities and Society, 2019, 45: 451- 459
doi: 10.1016/j.scs.2018.12.015
[3]   YANG C, PENG F L Feasibility study on the geothermal utility tunnel system[J]. Sustainable Cities and Society, 2019, 46: 101445
doi: 10.1016/j.scs.2019.101445
[4]   耿永常, 邵龙 哈尔滨地下空间开发利用现状与对策分析[J]. 哈尔滨工业大学学报, 2007, 39 (10): 1631- 1634+1669
GENG Yong-chang, SHAO Long The current situation and strategy for development and utility of underground space in Harbin[J]. Journal of Harbin Institute of Technology, 2007, 39 (10): 1631- 1634+1669
doi: 10.3321/j.issn:0367-6234.2007.10.028
[5]   WU D, ZHANG Y, LI A, et al Indoor airborne fungal levels in selected comprehensive compartments of the urban utility tunnel in Nanjing, southeast China[J]. Sustainable Cities and Society, 2019, 51: 101723
doi: 10.1016/j.scs.2019.101723
[6]   CURIEL-ESPARZA J, CANTO-PERELLO J Indoor atmosphere hazard identification in person entry urban utility tunnels[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2005, 20 (5): 426- 434
[7]   HIIPAKKA D W, BUFFINGTON J R Resolution of sick building syndrome in a high-security facility[J]. Applied Occupational and Environmental Hygiene, 2000, 15 (8): 635- 643
doi: 10.1080/10473220050075644
[8]   HULIN M, MOULARAT S, KIRCHNER S, et al Positive associations between respiratory outcomes and fungal index in rural inhabitants of a representative sample of French dwellings[J]. International Journal of Hygiene and Environmental Health, 2013, 216 (2): 155- 162
doi: 10.1016/j.ijheh.2012.02.011
[9]   LIU Z, LI A, HU Z, et al Study on the potential relationships between indoor culturable fungi, particle load and children respiratory health in Xi’an, China[J]. Building and Environment, 2014, 80: 105- 114
doi: 10.1016/j.buildenv.2014.05.029
[10]   TSAO Y C, HWANG Y H Impact of a water-damaged indoor environment on kindergarten student absences due to upper respiratory infection[J]. Building and Environment, 2013, 64: 1- 6
[11]   沈鑫 城市综合管廊防结露问题探讨[J]. 现代建筑电气, 2018, 9 (5): 16- 19
SHEN Xin Discussion on problems of anti condensation in urban utility tunnel[J]. Modern Architecture Electric, 2018, 9 (5): 16- 19
[12]   刘胡州 城市综合管廊通风系统设计分析研究[J]. 建筑热能通风空调, 2017, 36 (5): 86- 88
LIU Hu-zhou Discussion and study of ventilation system design for urban utility tunnel[J]. Building Energy & Environment, 2017, 36 (5): 86- 88
doi: 10.3969/j.issn.1003-0344.2017.05.022
[13]   王恒栋, 薛伟辰. 综合管廊工程理论与实践[M]. 北京: 中国建筑工业出版社, 2013.
[14]   LI A, KOSONEN R, MELIKOV A, et al Ventilation and environmental control of underground spaces: a short review[J]. E3S Web Conference, 2019, 111: 01039
doi: 10.1051/e3sconf/201911101039
[15]   住房和城乡建设部. 城市综合管廊工程技术规范: GB 50838—2015 [S]. 北京: 中国计划出版社.
[16]   孙立, 余斌, 杨恒声 城市地下综合管廊通风设计探讨[J]. 暖通空调, 2018, 48 (8): 94- 96
SUN Li, YU Bin, YANG Heng-sheng Ventilation design of urban underground utility tunnel[J]. Heating Ventilating Air Conditioning, 2018, 48 (8): 94- 96
[17]   唐宏辉, 刘承东, 刘雪峰 某综合管廊通风系统实地测试及分析[J]. 广东土木与建筑, 2020, 27 (6): 69- 72
TANG Hong-hui, LIU Cheng-dong, LIU Xue-feng Field test and analysis of ventilation system of a utility tunnel[J]. Guangdong Architecture Civil Engineering, 2020, 27 (6): 69- 72
[18]   王雪梅, 谭羽非, 于克成, 等 综合管廊热力舱在机械通风模式下温度场的模拟分析[J]. 区域供热, 2018, 196 (5): 34- 41
WANG Xue-mei, TAN Yu-fei, YU Ke-cheng, et al Simulation analysis of temperature field for thermal compartment in the utility tunnel[J]. District Heating, 2018, 196 (5): 34- 41
[19]   闵绚, 张正维, 邹建明, 等 管线敷设与风机室布置对综合管廊通风阻力影响研究[J]. 隧道建设, 2019, 39 (9): 1423- 1430
MIN Xuan, ZHANG Zheng-wei, ZOU Jian-ming, et al Influence of conduit deployment and fan room location on ventilation flow resistance in a utility tunnel[J]. Tunnel Construction, 2019, 39 (9): 1423- 1430
[20]   周游, 周伟国 综合管廊电缆舱通风数值模拟研究[J]. 建筑热能通风空调, 2016, 35 (11): 29- 33+91
ZHOU You, ZHOU Wei-guo Study on numerical simulation of utility cable tunnel ventilation system[J]. Building Energy & Environment, 2016, 35 (11): 29- 33+91
doi: 10.3969/j.issn.1003-0344.2016.11.007
[21]   王振芹, 曹正第, 王娜 GIl管廊通风温度场研究[J]. 高压电器, 2020, 56 (7): 128- 132
WANG Zhen-qin, CAO Zheng-di, WANG Na Study on ventilation temperature field of Gil tunnel[J]. High Voltage Apparatus, 2020, 56 (7): 128- 132
[22]   白思卓, 樊越胜, 王欢, 等 综合管廊电缆舱室通风形式数值模拟研究[J]. 建筑热能通风空调, 2020, 39 (2): 32- 35+44
BAI Si-zhuo, FAN Yue-sheng, WANG Huan, et al Simulation study on ventilation form of utility tunnel cable cabin[J]. Building Energy & Environment, 2020, 39 (2): 32- 35+44
doi: 10.3969/j.issn.1003-0344.2020.02.008
[23]   刘承东, 黎庶, 唐宏辉, 等 城市地下综合管廊通风缩尺模型的相似性分析[J]. 地下空间与工程学报, 2019, 15 (6): 1609- 1619
LIU Cheng-dong, LI Shu, TANG Hong-hui, et al Similarity analysis on the ventilation reduced-scale model of urban underground utility tunnel[J]. Journal of Underground Space and Engineering, 2019, 15 (6): 1609- 1619
[24]   王昱, 李娜, 张春萌, 等 苏州城北路综合管廊通风系统设计[J]. 煤气与热力, 2016, 36 (11): 13- 17
WANG Yu, LI Na, ZHANG Chun-meng, et al Design of ventilation system for Chengbei Road utility tunnel in Suzhou city[J]. Gas & Heat, 2016, 36 (11): 13- 17
doi: 10.3969/j.issn.1000-4416.2016.11.003
[25]   唐志华 城市综合管廊通风系统设计[J]. 暖通空调, 2018, 48 (3): 45- 49
TANG Zhi-hua Ventilation system design of urban utility tunnel[J]. Heating Ventilating Air Conditioning, 2018, 48 (3): 45- 49
[26]   INCROPERA F P, DEWITT D P. Fundamentals of heat and mass transfer[M]. 4th ed. New York: John Wiley & Sons, 2006.
[27]   高增 综合管廊通风分区长度的研究[J]. 暖通空调, 2019, 49 (5): 57- 60
GAO Zeng Length of ventilation compartment of utility tunnel[J]. Heating Ventilating Air Conditioning, 2019, 49 (5): 57- 60
[1] Bo-han LENG,Tang-bin XIA,He SUN,Hao WANG,Li-feng XI. Digital twin mapping modeling and method of monitoring and simulation for reconfigurable manufacturing system[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 843-855.
[2] Xiao-long WANG,Hai-feng LV,Jin-ying HUANG,Guang-pu LIU. Model-free feedforward/feedback control scheme for magnetorheological damper[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 873-878.
[3] Chao-bo ZHANG,Yong-zheng LIU,Hong-bo LI,Yang ZHAO,Li-zhu ZHANG,Zi-hao WANG. Weighted residual clustering-based building load prediction interval estimation[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 930-937.
[4] Gen LI,Tong-chun HAN,Jun-yang WU,Yu ZHANG. Coupled analysis on surface runoff and soil water movement by finite volume method[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 947-955.
[5] Shao-xiang CHEN,Zhi-gang CAO,Xing-chi YE,Yuan-qiang CAI,Qi ZHANG. Hypoplastic model for road base coarse-grained materials accounting for temperature effect[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 938-946, 976.
[6] Zhong-hao WANG,Zheng-guo XU,Yun ZHANG. Improved similarity-based modeling approach for dust deposition monitoring of photovoltaic modules[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 718-726.
[7] Jia MENG,Jun-chao LI,Yun-min CHEN. Strain-hardening mechanism and applicability in hypergravity simulation of municipal solid waste[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 664-673.
[8] Yu TAO,Bo-rui ZHANG,Lei XU,Hong-lei TIAN,Ya-peng ZHANG,Qing-wen ZHANG. Simulation of snow accumulation on high-speed train bogies based on snow-wall bonding criteria validation[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 674-682.
[9] Ke-wen ZHANG,Bai-song PAN. Control design of spacecraft autonomous rendezvous using nonlinear models with uncertainty[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 833-842.
[10] Jun-heng XU,Xiao-jun YANG,Bing LI. Design of wing mechanism with variable camber based on cross-spring flexural pivots[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 444-451, 509.
[11] Guo-hui SHEN,Bao-heng LI,Yong GUO,Zheng ZHAO,Feng PAN. Calculation methods of torsion response and torsion equivalent static wind loading of transmission tower[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 579-589.
[12] Jing-hui CHU,Li-dong SHI,Pei-guang JING,Wei LV. Context-aware knowledge distillation network for object detection[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 503-509.
[13] Yong-chao WANG,Yu CAO,Yu-hui YANG,Duan-qing XU. Dialogue generation model based on knowledge transfer and two-direction asynchronous sequence[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 520-530.
[14] Shuai-ling GAO,Jun-qiang XIA,Bo-liang DONG,Mei-rong ZHOU,Jing-ming HOU. Mathematical model for urban flooding with effect of drainage of street inlets[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 590-597.
[15] Xiao-wu TANG,Min-liang FEI,Yue YU,Jia-xin LIANG,Guo-ping SUN. Influence of rainy season precipitation on groundwater level of Jingtoushan deep-buried earthen site in Zhejiang Province[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 598-606, 612.