Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (4): 674-682    DOI: 10.3785/j.issn.1008-973X.2022.04.006
    
Simulation of snow accumulation on high-speed train bogies based on snow-wall bonding criteria validation
Yu TAO1(),Bo-rui ZHANG2(),Lei XU1,Hong-lei TIAN1,Ya-peng ZHANG2,Qing-wen ZHANG2
1. CRRC Qingdao Sifang Limited Company, Qingdao 266111, China
2. School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
Download: HTML     PDF(2183KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A simulation study of analyzing the snow accumulation on the bogie regions of a high-speed train was conducted based on the Realizable k-ω turbulence model coupling with the discrete phase model (DPM). A series of snow-wall bonding criteria, including surface threshold friction velocity and capture angle, were proposed by considering the interactions and collisions between flow and particles. The rationality of the parameter settings was discussed by using control variable parameter analyses based on the prototype test provided by Paradot. The simulation results were compared with the prototype test. The parameter settings adapted in the previous studies for the snow-wall bonding might be relevantly low. The relative values in the criteria are 1.0 m/s and 60°, respectively. Then the validated parameter settings were used, and the snow accumulation estimations on the bogie regions of a high-speed train in China were conducted. Results show that snow accumulations are mainly located on the leeward side (surface) of each bogie component and connecting corners, especially the frame beam and the gear reduction box. The snow-covering areas of the rear bogie are more dispersed.



Key wordshigh-speed train      bogie      discrete phase model (DPM)      snow-wall bonding criteria     
Received: 13 May 2021      Published: 24 April 2022
CLC:  TU 111  
Fund:  中车青岛四方股份重点科研资助项目(JS-TK-2020-450)
Cite this article:

Yu TAO,Bo-rui ZHANG,Lei XU,Hong-lei TIAN,Ya-peng ZHANG,Qing-wen ZHANG. Simulation of snow accumulation on high-speed train bogies based on snow-wall bonding criteria validation. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 674-682.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.04.006     OR     https://www.zjujournals.com/eng/Y2022/V56/I4/674


覆雪准则参数改进的高速列车转向架覆雪模拟

采用Realizable k-ω湍流模型,耦合离散相模型(DPM),对高速列车运行时的车底覆雪问题开展模拟研究. 模拟中,考虑流场作用与颗粒-壁面碰撞特征2个方面,建立基于壁面阈值摩擦速度与颗粒-壁面捕捉角的壁面覆雪判别准则. 选用Paradot开展的简单几何体覆雪试验作为原型,通过控制变量分析,对准则参数设置的合理性进行讨论. 与原型覆雪的结果对比表明,以往研究中对覆雪准则相关参数的取值偏小,建议改进2个判别参数,分别为1.0 m/s与60°. 利用改进参数的准则,对我国现有运营某型号高速列车运行时的转向架覆雪进行模拟评估. 结果表明,转向架易出现覆雪的区域主要位于部件背风侧壁面及连接角落,尤其是中部构架横梁与齿轮减速箱,后转向架覆雪分布区域更分散.


关键词: 高速列车,  转向架,  离散相模型(DPM),  壁面覆雪捕捉准则 
Fig.1 Explanations of snow-wall bonding criteria
Fig.2 Layouts of snow accumulation on pyramid model
Fig.3 Results of snow accumulation on pyramid model
Fig.4 Surface grids and boundaries of pyramid model
Fig.5 Flow field around pyramid model
Fig.6 Path lines of inputted particles
Fig.7 Friction velocity of pyramid model A
Fig.8 Variable parameter analysis of capture angle
Fig.9 Capture ratios of model elements on axis
Fig.10 Simulation analysis model of high-speed train
Fig.11 Grid independence validations of simulation analysis model
Fig.12 Inputs of snow particles and their path lines
Fig.13 Distribution of flow fields around bogie of high-speed train
Fig.14 Friction velocity distribution of backward bogie
Fig.15 Capture ratios of bogie elements
[1]   王永飞. 基于简单模型试验的寒区高速列车转向架覆雪模拟研究 [D]. 哈尔滨: 哈尔滨工业大学, 2020: 1-3.
WANG Yong-fei. Snow-accumulation simulation of high-speed train bogie area in frigid zone based on experiment of basic models [D]. Harbin: Harbin Institute of Technology, 2020: 1-3.
[2]   苗秀娟, 何侃 高速列车转向架区域积雪形成原因及防积雪研究[J]. 中南大学学报: 自然科学版, 2018, 49 (3): 252- 259
MIAO Xiu-juan, HE Kan Cause analysis of snow packing in high-speed train’s bogie regions and anti-snow packing design[J]. Journal of Central South University: Science and Technology, 2018, 49 (3): 252- 259
[3]   THOMAS J De-icing[J]. International Railway Journal, 2009, 49 (1): 24- 25
[4]   TRENKER M, PAYER W, KRENN C, et al. Numerical simulation of snow entrainment with application to train undercarriage design [C]// NAFEMS World Congress. Malta: NAFEMS, 2005: 29-33.
[5]   PARADOT N, ALLAIN E, CROUE R, et al. Development of a numerical modelling of snow accumulation on a high speed train [C]// International Conference on Railway Technology: Research, Development and Maintenance. Stirlingshire: Civil-Comp Press, 2014: 1-17.
[6]   ALLAIN E, PARADOT N. RIBOURG M, et al. Experimental and numerical study of snow accumulation on a high-speed train [C]// Proceedings of the 49th International Symposium of Applied Aerodynamics. Lille: [s. n. ], 2014: FP18.
[7]   蔡路, 张继业, 李田 高速列车转向架区域雪粒运动特性分析[J]. 中国科学: 技术科学, 2019, 49 (12): 1593- 1602
CAI Lu, ZHANG Ji-ye, LI Tian Analysis of the motion characteristics of snow particles in the bogie region of a high-speed train[J]. Scientia Sinica Technologica, 2019, 49 (12): 1593- 1602
[8]   蔡路, 李田, 张继业 高速列车转向架雪粒沉积特性数值研究[J]. 浙江大学学报:工学版, 2020, 54 (4): 804- 815
CAI Lu, LI Tian, ZHANG Ji-ye Numerical study on deposition characteristics of snow particle on bogie of high-speed train[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (4): 804- 815
[9]   张乐, 李田, 蔡路, 等 雪粒参数对高速列车转向架区域雪粒堆积的影响[J]. 机械工程学报, 2020, 56 (10): 216- 224
ZHANG Le, LI Tian, CAI Lu, et al Effect of snow parameters on snow accumulation in high-speed train bogies[J]. Journal of Mechanical Engineering, 2020, 56 (10): 216- 224
doi: 10.3901/JME.2020.10.216
[10]   WANG J B, ZHANG J, XIE Y, et al A study of snow accumulating on the bogie and the effects of deflectors on the de-icing performance in the bogie region of a high-speed train[J]. Cold Region Science and Technology, 2018, 148: 121- 130
doi: 10.1016/j.coldregions.2018.01.010
[11]   WANG J B, GAO G J, ZHANG Y, et al Anti-snow performance of snow shields designed for brake calipers of a high-speed train[J]. Journal of Rail and Rapid Transit, 2019, 233 (2): 121- 140
doi: 10.1177/0954409718783327
[12]   GAO G J, ZHANG Y, XIE F, et al Numerical study on the anti-snow performance of deflectors in the bogie region of a high-speed train using the discrete phase model[J]. Journal of Rail and Rapid Transit, 2019, 233 (2): 141- 159
doi: 10.1177/0954409718785290
[13]   王东屏, 尤明, 范军, 等 高速动车组转向架积雪特性数值仿真及优化设计[J]. 铁道学报, 2019, 41 (4): 25- 32
WANG Dong-ping, YOU Ming, FAN Jun, et al Numerical simulation on snowpack characteristics of high-speed EMU bogie and optimization design[J]. Journal of the China Railway Society, 2019, 41 (4): 25- 32
doi: 10.3969/j.issn.1001-8360.2019.04.004
[14]   韩运动, 姚松, 陈大伟, 等 高速列车转向架舱内流场实车测试与数值模拟[J]. 交通运输工程学报, 2015, 15 (6): 51- 60
HAN Yun-dong, YAO Song, CHEN Da-wei, et al Real vehicle test and numerical simulation of flow field in high- speed train bogie cabin[J]. Journal of Traffic and Transportation Engineering, 2015, 15 (6): 51- 60
doi: 10.3969/j.issn.1671-1637.2015.06.007
[15]   丁叁叁, 田爱琴, 董天韵, 等 端面下斜导流板对高速列车转向架防积雪性能的影响[J]. 中南大学学报: 自然科学版, 2016, 47 (4): 1400- 1405
DING San-san, TIAN Ai-qin, DONG Tian-yun, et al Influence of inclined guiding plate on anti-snow performance of high-speed train bogie[J]. Journal of Central South University: Science and Technology, 2016, 47 (4): 1400- 1405
[16]   何德华, 王刚义, 陈厚嫦, 等 基于风雪两相流的高寒动车组转向架防冰雪扰流技术研究[J]. 铁道机车车辆, 2016, 36 (4): 38- 42
HE De-hua, WANG Gang-yi, CHEN Hou-chang, et al Analysis on two-phase flowing anti-ice/snow of low-temperature EMU bogie[J]. Railway Locomotive and Car, 2016, 36 (4): 38- 42
doi: 10.3969/j.issn.1008-7842.2016.04.09
[17]   冯永华, 黄照伟, 张琰, 等 高寒动车组转向架区域积雪结冰数值仿真研究[J]. 铁道科学与工程学报, 2017, 14 (3): 437- 444
FENG Yong-hua, HUANG Zhao-wei, ZHANG Yan, et al Research of numerical simulation of the snow icy phenomenon of the high-speed train bogie area[J]. Journal of Railway Science and Engineering, 2017, 14 (3): 437- 444
doi: 10.3969/j.issn.1672-7029.2017.03.002
[18]   MORSI S A, ALEXANDER A J An investigation of particle trajectories in two-phase systems[J]. Journal of Fluid Mechanics, 1972, 55 (2): 193- 208
doi: 10.1017/S0022112072001806
[19]   MELLOR M. Blowing snow cold regions science and engineering (Part III) [R]. Hampshire: U. S. Army Cold Regions Research and Engineering Laboratory, 1965.
[20]   NISHIMURA K, HUNT J C R Saltation and incipient suspension above a flat particle bed below a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2000, 417: 77- 102
doi: 10.1017/S0022112000001014
[21]   KIND R J A critical examination of the requirements for model simulation of wind-induced erosion/ deposition phenomena such as snow drifting[J]. Atmospheric Environment, 1976, 10 (3): 219- 227
doi: 10.1016/0004-6981(76)90094-9
[1] You-cai WAN,Lei ZHANG,Ming LI,Bin LIU,Yuan-gui MEI. Maximum dynamic equivalent leakage area while high-speed train passing through tunnels[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 695-703.
[2] Lu CAI,Tian LI,Ji-ye ZHANG. Numerical study on deposition characteristics of snow particle on bogie of high-speed train[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 804-815.
[3] Yan-hong SUN,Jie ZHANG,Jian HAN,Yang GAO,Xin-biao XIAO. Sound transmission characteristics of silencer in wind ducts of high-speed train[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1389-1397.
[4] Wen-qiang DAI,Xu ZHENG,Zhi-yong HAO,Yi QIU. Prediction of high-speed train interior noise using energy finite element analysis[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2396-2403.
[5] NIU Ji-qiang, ZHOU Dan, LIANG Xi-feng, JIA Li-rong. Influence of diversion device on unsteady aerodynamic performance of pantograph[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 752-760.
[6] ZHANG Jie, XIAO Xin-biao, WANG Rui-qian, JIN Xue-song. Vibro-acoustic characteristics measurement and equivalent modeling of aluminum extrusion of high-speed trains[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 545-553.
[7] HAN Yun-dong, YAO Song. Scale effect analysis in aerodynamic performance of high-speed train[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2383-2391.
[8] LIU Feng, YAO Song, LIU Tang hong, ZHANG Jie. Analysis on aerodynamic pressure of tunnel wall of high-speed railways by full-scale train test[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 2018-2024.
[9] LIU Xing, DENG Jian, ZHENG Yao, PAN Guo-feng. Impact of aerodynamics of pantograph of a high-speed train on pantograph-catenary current collection[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(3): 558-564.
[10] LIU Jun-biao, JIN Xin-yu,DONG Fang. Wireless fading analysis in high-speed train communication[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(9): 1580-1584.