Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (7): 1389-1397    DOI: 10.3785/j.issn.1008-973X.2019.07.019
Traffic Engineering, Civil Engineering     
Sound transmission characteristics of silencer in wind ducts of high-speed train
Yan-hong SUN1(),Jie ZHANG1,Jian HAN1,Yang GAO2,Xin-biao XIAO1,*()
1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China
2. CRRC Changchun Railway Vehicles Limited Company, Changchun 130000, China
Download: HTML     PDF(1544KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A typical impedance silencer was installed in the ducts in order to inhibit the effect of air conditioning system on interior noise. The quantitative analysis of its acoustic transmission characteristics is an important part of noise reduction design for high-speed trains. The acoustic transmission model of a typical impedance silencer structure in the duct of air conditioning system was established and analyzed based on hybrid method of finite element and statistical energy analysis (FE-SEA). The transmission characteristics of the silencer between the frequencies of 80?3 150 Hz were predicted and calculated. The mechanics of peaks and valleys in the transmission loss curve were explained by calculating the acoustic modes based on the acoustic finite element method. The design projects of the silencer were optimally selected from the perspective of the acoustic performance and the actual situation of the project. Results show that the silencer in the air duct can effectively reduce noise, and its acoustic mode shape characteristics are the cause of its transmission loss peak/valley. The silencer resistive characteristics have a dominant effect on its acoustic transmission loss, and the optimal selection of acoustic absorbing material can improve the transmission loss up to about 18 dB. The resistance characteristics have relatively less effect on its transmission loss, and the optimal selection of the quantity and position of the absorption packages can improve its transmission loss by 4.1 dB. The impedance composite optimal selection can increase the transmission loss by 18.6 dB.



Key wordshigh-speed train      interior noise      air conditioning system      silencer in duct      transmission loss      hybrid finite element-statistical energy analysis method     
Received: 07 June 2018      Published: 25 June 2019
CLC:  U 270  
Corresponding Authors: Xin-biao XIAO     E-mail: sun_yanhong_swjtu@foxmail.com;xinbiaoxiao@163.com
Cite this article:

Yan-hong SUN,Jie ZHANG,Jian HAN,Yang GAO,Xin-biao XIAO. Sound transmission characteristics of silencer in wind ducts of high-speed train. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1389-1397.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.07.019     OR     http://www.zjujournals.com/eng/Y2019/V53/I7/1389


高速列车风道消声器传声特性

为了抑制空调系统对高速列车车内噪声的影响,在风道内设置阻抗复合消声器,量化分析传声特性是高速列车低噪声设计的重要内容. 基于有限元-统计能量分析(FE-SEA)混合法建立某高速列车风道消声器传声特性分析模型,对80~3 150 Hz频率区段的风道消声器传声特性进行预测计算. 采用声学有限元法建立风道消声器声学模态分析模型,针对传递损失的峰值和谷值所在的频率区段,计算风道消声器声学模态,解释传递损失峰/谷值的成因. 从提升声学性能的角度,结合工程实际情况,对风道消声器进行设计方案优选. 结果表明:风道消声器具有良好的降噪作用,声学模态振型特性是传递损失峰/谷值的成因;消声器阻性特性对传递损失的影响最大,通过吸声选材优选可以最大提高传递损失18.0 dB;消声器抗性特性影响相对较小,通过吸声包数量和位置的优选可以最大提高传递损失4.1 dB;考虑阻抗复合优选方案,最高可以提高风道消声器传递损失18.6 dB.


关键词: 高速列车,  车内噪声,  空调系统,  风道消声器,  传递损失,  有限元-统计能量分析混合法 
状态 客室前 客室中 客室后
开空调 48.2 43.8 45.5
关空调 40.6 37.3 39.8
差 值 7.6 6.5 5.7
Tab.1 Overall level of interior sound pressure
Fig.1 Difference of interior noise spectrum when air condit-ioning switch
Fig.2 Model of silencer in wind ducts of high-speed train
Fig.3 Simulation model of silencer in wind ducts
Fig.4 Model validation based on hybrid FE-SEA method
Fig.5 Curve of transmission loss of silencer in wind ducts
Fig.6 Acoustic modes of silencer in wind ducts
Fig.7 Transmission loss and standard curves of silencer in wind ducts
吸声材料 ρ/(kg·m?3 δ/(N·s·m?4 Po Rw/dB
矿渣棉 50 60 000 0.95 31.8
泡沫材料 55 87 000 0.97 26.8
玻璃棉 75 9 000 0.99 28.9
毛毡 50 45 000 0.92 25.3
玻璃纤维 5.5 20 000 0.94 25.8
Tab.2 Parameters of selected sound absorption materials
Fig.8 Analysis on influence of sound absorption materials’ selection on transmission loss of silencer in wind ducts
Fig.9 Analysis on influence of sound absorption materials’ thickness on transmission loss of silencer in wind ducts
Fig.10 Analysis on influence of sound packets’ number
Fig.11 Analysis on influence of sound packets’ position (α=81°,β=71°,γ=62°)
Fig.12 Comparison of structure of composite optimization with original model
Fig.13 Comparison of transmission loss results of composite optimal selection with original model
[1]   FANG Z, JI Z L Numerical mode matching approach for acoustic attenuation prediction of double-chamber perforated tube dissipative silencers with mean flow[J]. Journal of Computational Acoustics, 2014, 22 (2): 1450004/1- 1450004/15
[2]   YU X, CHENG L Duct noise attenuation using reactive silencer with various internal configurations[J]. Journal of Sound and Vibration, 2015, 335: 229- 244
doi: 10.1016/j.jsv.2014.08.035
[3]   李明瑞, 邓国勇, 米永振, 等 基于响应面法的乘用车消声器声学性能优化[J]. 上海交通大学学报, 2017, 51 (09): 1031- 1035
LI Ming-rui, DENG Guo-yong, MI Yong-zhen, et al Acoustic performance optimization of the exhaust muffler for a car based on response surface method[J]. Journal of Shanghai Jiao Tong University, 2017, 51 (09): 1031- 1035
[4]   褚志刚, 匡芳, 高小新, 等 出口管过渡圆弧对抗性消声器性能的影响及应用[J]. 农业工程学报, 2015, 31 (6): 105- 112
CHU Zhi-gang, KUANG Fang, GAO Xiao-xin, et al Effects of outlet pipe transition circular arc on properties of reactive muffler and its application[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31 (6): 105- 112
[5]   褚志刚, 陆小华, 沈林邦, 等 抗性消声结构声腔模态对其消声特性的影响研究[J]. 内燃机工程, 2016, 37 (4): 147- 154
CHU Zhi-gang, LU Xiao-hua, SHEN Lin-bang, et al Effects of acoustic modes in chamber on acoustic attenuation characteristics of reactive silencing elements[J]. Chinese Internal Combustion Engine Engineering, 2016, 37 (4): 147- 154
[6]   杨亮, 季振林 阻性管道消声性能预测的边界元数值配点混合方法[J]. 振动工程学报, 2016, 29 (3): 498- 503
YANG Liang, JI Zhen-lin Acoustic attenuation prediction of dissipative ducts by combining boundary element method and numerical point collocation approach[J]. Journal of Vibration Engineering, 2016, 29 (3): 498- 503
[7]   杨亮, 季振林 消声器中高频传递损失计算的有限元-模态匹配混合方法[J]. 振动与冲击, 2017, (23): 243- 247
YANG Liang, JI Zhen-lin FE-mode maching hybridapproach for transmission loss prediction of silencers in mid-high frequency range[J]. Journal of Vibration and Shock, 2017, (23): 243- 247
[8]   杨亮, 季振林 穿孔消声器传递损失预测的快速多极混体边界元方法[J]. 哈尔滨工程大学学报, 2017, 38 (8): 1247- 1253
YANG Liang, JI Zhen-lin Transmission loss prediction of perforated silencers by fast multipole mixed-body boundary element method[J]. Journal of Harbin Engineering University, 2017, 38 (8): 1247- 1253
[9]   ZHU D D, JI Z L Transmission loss prediction of reactive silencers using 3-D time-domain CFD approach and plane wave decomposition technique[J]. Applied Acoustics, 2016, 112: 25- 31
doi: 10.1016/j.apacoust.2016.05.004
[10]   李恒, 郝志勇, 刘联鋆, 等 多腔穿孔消声器声学特性三维时域计算及评估[J]. 浙江大学学报: 工学版, 2015, 49 (5): 887- 892
LI Heng, HAO Zhi-yong, LIU Lian-yun, et al Three-dimensional time-domain computation and evaluation of acoustic performance of multi-cavity perforated muffler[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (5): 887- 892
[11]   范威, 郭立新 考虑气流影响的直通穿孔管消声器声学性能[J]. 东北大学学报: 自然科学版, 2016, 37 (11): 1655- 1659
FAN Wei, GUO Li-xin Acoustic performance of the straight-through perforated pipe silencer considering the effect of gas flow[J]. Journal of Northeasten University: Natural Science, 2016, 37 (11): 1655- 1659
[12]   JI L, HUANG Z. A case study of random boundary effects on the mid-frequency vibration of built-up systems [C] // Inter-Noise and Noise-Con Congress and Conference Proceedings. Sorrento: INCE, 2012: 377-382.
[13]   中华人民共和国建设部. 中华人发共和国国家标准建筑隔声评价标准:GB/T 50121-2005 [S]. 北京: 中国建筑工业出版社, 2005.
[14]   LEE I, SELAMET A, HUFF N T Impact of perforation impedance on the transmission loss of reactive and dissipative silencers[J]. Journal of the Acoustical Society of America, 2006, 120 (6): 3706- 3713
doi: 10.1121/1.2359703
[15]   项端祈. 空调系统消声与隔振设计[M]. 1版. 北京: 机械工业出版社, 2005.
[16]   ALLARD J F, ATALLA N. Propagation of sound in porous media: modeling sound absorbing materials [M]. 2nd ed. West Sussex: Wiley, 2009.
[17]   段翠云, 崔光, 刘培生 多孔吸声材料的研究现状与展望[J]. 金属功能材料, 2011, 18 (1): 60- 65
DUAN Cui-yun, CUI Guang, LIU Pei-sheng Present research and prospect of porous absorption materials[J]. Metallic Functional Materials, 2011, 18 (1): 60- 65
[1] You-cai WAN,Lei ZHANG,Ming LI,Bin LIU,Yuan-gui MEI. Maximum dynamic equivalent leakage area while high-speed train passing through tunnels[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 695-703.
[2] Lu CAI,Tian LI,Ji-ye ZHANG. Numerical study on deposition characteristics of snow particle on bogie of high-speed train[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 804-815.
[3] Wen-qiang DAI,Xu ZHENG,Zhi-yong HAO,Yi QIU. Prediction of high-speed train interior noise using energy finite element analysis[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2396-2403.
[4] QU Yi-qing, HAO Zhi-yong, LI Heng, ZHENG Xu, ZHOU Nan. Acoustic performance of fabric pipe in intake system[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1894-1900.
[5] NIU Ji-qiang, ZHOU Dan, LIANG Xi-feng, JIA Li-rong. Influence of diversion device on unsteady aerodynamic performance of pantograph[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 752-760.
[6] ZHANG Jie, XIAO Xin-biao, WANG Rui-qian, JIN Xue-song. Vibro-acoustic characteristics measurement and equivalent modeling of aluminum extrusion of high-speed trains[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 545-553.
[7] HAN Yun-dong, YAO Song. Scale effect analysis in aerodynamic performance of high-speed train[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2383-2391.
[8] WU Jiang-hong, JIANG Feng. Life cycle climate performance of air conditioner based on dynamic loads[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(10): 2061-2069.
[9] LIU Feng, YAO Song, LIU Tang hong, ZHANG Jie. Analysis on aerodynamic pressure of tunnel wall of  high-speed railways by full-scale train test[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 2018-2024.
[10] LI Heng,HAO Zhi-yong,LIU Lian-yun,ZHENG Xu. Three-dimensional time-domain computation and evaluation of acoustic performance of multi-cavity perforated muffler[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(5): 887-892.
[11] ZHENG Kang, HAO Zhi-yong, WANG Lian-sheng, LIU Gong-wen, ZHU Jun-liang, TAO Da-y. Research on transmission and structural radiation noise of  plastic engine cover[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(2): 342-347.
[12] LIU Xing, DENG Jian, ZHENG Yao, PAN Guo-feng. Impact of aerodynamics of pantograph of a high-speed train on pantograph-catenary current collection[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(3): 558-564.
[13] LIU Jun-biao, JIN Xin-yu,DONG Fang. Wireless fading analysis  in high-speed train communication[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(9): 1580-1584.
[14] MAO Jie, HAO Zhi-yong, LU Zhao-gang, CHEN Xin-rui. Sound insulation numerical calculation of an automobile
magnesium alloy dash based on FE-SEA hybrid method
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(12): 2184-2188.