Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (4): 695-703    DOI: 10.3785/j.issn.1008-973X.2021.04.011
    
Maximum dynamic equivalent leakage area while high-speed train passing through tunnels
You-cai WAN1(),Lei ZHANG2,Ming LI2,Bin LIU2,Yuan-gui MEI1,*()
1. Gansu Province Engineering Laboratory of Rail Transit Mechanics Application, Lanzhou Jiaotong University, Lanzhou 730070, China
2. CRRC TANGSHAN Limited Company, Tangshan 064099, China
Download: HTML     PDF(1224KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The external pressure of coaches was simulated based on one-dimensional, compressible, non-homentropic and unsteady flow model and the method of characteristics of generalized Riemann variables aiming at problems of static air tightness parameters being not able to truly reflect air tightness performance and inside pressure comfort when the train passing through tunnels. The leaked air mass flow was corrected, and the equivalent leakage area method was used to obtain the interior pressure while the high-speed train passing through the tunnel. The maximum dynamic equivalent leakage area values of the different coaches were analyzed based on the background of Mountain passenger dedicated line while the pressure inside coaches meeting different comfort standards. The recommended dynamic equivalent leakage area values for the single train meeting different comfort standards at different speeds were given. The dynamic equivalent leakage area is the smallest when the pressure inside cars meets the standard of 1 000 Pa/10 s. The minimum equivalent leakage area values decrease with the increase of train speed. The recommended threshold values of the equivalent leakage area for the first/last and middle coaches are 23.2 cm2 and 45.6 cm2, respectively.



Key wordshigh-speed train      tunnel      pressure wave      equivalent leakage area      one-dimensional flow model     
Received: 21 May 2020      Published: 07 May 2021
CLC:  U 271  
Fund:  中国铁路总公司系统性重大项目(P2018J003)
Corresponding Authors: Yuan-gui MEI     E-mail: 18293134923@163.com;meiyuangui@163.com
Cite this article:

You-cai WAN,Lei ZHANG,Ming LI,Bin LIU,Yuan-gui MEI. Maximum dynamic equivalent leakage area while high-speed train passing through tunnels. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 695-703.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.04.011     OR     http://www.zjujournals.com/eng/Y2021/V55/I4/695


山区高速列车车体动态当量泄漏面积阈值

针对静态气密参数无法真实反映列车过隧道时的气密性能问题和车内压力舒适性问题,基于一维可压缩非定常不等熵流动模型的广义黎曼变量特征线法,数值模拟列车过隧道时的车外压力波动. 对泄漏的空气质量流量进行修正,采用当量泄漏面积法模拟高速列车通过隧道时的车内压力. 以山区高速铁路为背景,研究中国某型号动车组车体动态当量泄漏面积阈值,提出列车符合不同舒适性标准时的动态当量泄漏面积阈值建议. 结果表明:车内压力符合1 000 Pa/10 s标准下的当量泄漏面积更小,列车当量泄漏面积阈值的最小值随着车速的增加而减小,头、尾车和中间车当量泄漏面积阈值的建议值分别为23.2和45.6 cm2.


关键词: 高速列车,  隧道,  压力波,  当量泄漏面积,  一维流动模型 
Fig.1 Schematic diagram of equivalent leakage model
Fig.2 Flow chart for estimating threshold of equivalent leakage area of coaches
Fig.3 Comparison between program calculation results and full scale testing results
类别 L /m S /m2 C /m v /(km·h?1
动车组 401.4 11.95 12.83 380
隧道 2812 100.0 35.45 ?
Tab.1 Parameters of full scale testing
Fig.4 Comparison between program calculation results and static testing results
类别 S /m2 C /m Vd /m3 Vp /m3 Vm /m3
动车组 12.10 13.16 4.5 101.0 183.0
隧道 100.0 38.43 ? ? ?
Tab.2 Parameters of train and tunnel
Fig.5 Pressure history of internal and external of car and maximum pressure change of internal car per 3 s
Fig.6 Threshold values of equivalent leakage area curve complying with different comfort standards
隧道类型 LTU /km
中长隧道 1.0,2.0
长隧道 3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0
特长隧道 15.0,20.0
Tab.3 Table of different lengths tunnels for simulation
cm2
标准 头车 中间车 尾车
500 Pa/s 127.1 189.4 129.4
800 Pa/3 s 71.0 119.4 71.1
1000 Pa/10 s 33.2 56.3 29.2
Tab.4 Minimum threshold values of equivalent leakage area meeting different comfort standards
Fig.7 Effect of train length on threshold values of equivalent leakage area
cm2
编组 头车 中间车 尾车
500 Pa /s 800 Pa /3 s 1000 Pa /10 s 500 Pa /s 800 Pa /3 s 1000 Pa /10 s 500 Pa /s 800 Pa /3 s 1000 Pa /10 s
8 109.4 70.8 32.7 190.6 118.1 51.9 111.9 64.5 26.6
16 106.3 62.4 28.1 179.8 99.2 45.6 106.6 59.7 23.2
Tab.5 Minimum threshold values of equivalent leakage area under different single train length
Fig.8 Effect of train speed on threshold values of equivalent leakage area
cm2
v /(km·h?1 头车 中间车 尾车
500 Pa /s 800 Pa /3 s 1000 Pa /10 s 500 Pa /s 800 Pa /3 s 1000 Pa /10 s 500 Pa /s 800 Pa /3 s 1000 Pa /10 s
250 231.9 113.5 62.6 441.0 218.7 92.3 238.7 122.6 43.1
300 164.0 85.2 42.3 259.4 153.7 73.4 176.3 93.9 36.6
350 127.1 71.0 33.2 189.4 119.4 56.3 129.4 71.1 29.2
400 106.3 62.4 28.1 179.8 99.2 45.6 106.6 59.7 23.2
Tab.6 Minimum threshold values of equivalent leakage area while single train passing through tunnels
Fig.9 Effect of tunnel length on threshold values of equivalent leakage area
km
v /(km·h?1 LTU /km
基于头车最大正压 基于尾车最大负压
250 1.482 2.890
300 1.345 2.073
350 1.260 1.575
400 1.206 1.242
Tab.7 Critical length of tunnels under different velocities
cm2
v /
(km·h?1
头车 中间车 尾车
500 Pa/s 800 Pa/3 s 1000 Pa/10 s 500 Pa/s 800 Pa/3 s 1000 Pa/10 s 500 Pa/s 800 Pa/3 s 1000 Pa/10 s
250 187.6 96.9 63.9 384.5 190.0 112.9 246.1 130.8 49.7
300 150.0 77.9 47.1 281.8 141.1 73.1 194.2 98.1 36.1
350 124.8 66.8 43.7 223.1 114.0 76.5 140.2 67.4 35.6
400 103.7 60.2 47.3 185.3 99.8 74.2 109.5 56.5 33.7
Tab.8 Minimum threshold values of equivalent leakage area of single train at critical tunnels
cm2
v /
(km·h?1
头/尾车 中间车
500
Pa/s
800
Pa/3 s
1000
Pa/10 s
500
Pa/s
800
Pa/3 s
1000
Pa/10 s
250 187.6 96.9 43.1 384.5 190.0 92.3
300 150.0 77.9 36.1 259.4 141.1 73.1
350 124.8 66.8 29.2 189.4 114.0 56.3
400 103.7 56.5 23.2 179.8 99.2 45.6
Tab.9 Recommended values of equivalent leakage area
[1]   GAWTHORPE R G Pressure effects in railway tunnels[J]. Rail International, 2000, 31: 10- 17
[2]   PALMERO N M, VARDY A Tunnel gradients and aural health criterion for train passengers[J]. Proceedings of the Institution of Mechanical Engineers Part F: Journal of Rail and Rapid Transit, 2014, 228 (7): 821- 832
doi: 10.1177/0954409713490684
[3]   田红旗 中国列车空气动力学研究进展[J]. 交通运输工程学报, 2006, 6 (1): 1- 9
TIAN Hong-qi Study evolvement of train aerodynamics in China[J]. Journal of Traffic and Transportation Engineering, 2006, 6 (1): 1- 9
doi: 10.3321/j.issn:1671-1637.2006.01.001
[4]   肖京平, 黄志祥, 陈立 高速列车空气动力学研究技术综述[J]. 力学与实践, 2013, 35 (2): 1- 12
XIAO Jing-ping, HUANG Zhi-xiang, CHEN Li Review of aerodynamic investigations for high speed[J]. Mechanics in Engineering, 2013, 35 (2): 1- 12
doi: 10.6052/1000-0879-13-063
[5]   YAMAMOTO A. Aerodynamics of train and tunnel [C]// Proceeding of 1st International Conference on Vehicle Mechanics. Detroit: SAE, 1968: 151-163.
[6]   KLINGEL R Pressure-tight passenger coaches for new lines: fundamentals and possible solutions for airconditioning systems[J]. Zero Emission Vehicles-Glas. Annual, 1988, 112 (1): 10- 18
[7]   SIMA M. New unifying procedure for working with pressure tightness of rail passenger vehicles [C]// Proceeding of 11th International Symposium on the Aerodynamics and Ventilation of Vehicle Tunnels. Sweden: BHR Group, 2003: 743-757.
[8]   KLAVER E C, KASSIES E. Dimensioning of tunnels for passenger comfort in Netherlands [C]// Proceeding of 10th International Symposium on the Aerodynamics and Ventilation of Vehicle Tunnels. Cranfield U K: BHR Group, 2000: 737-755.
[9]   余南阳, 梅元贵 高速铁路隧道压力波动主要影响参数研究[J]. 中国铁道科学, 2003, 24 (6): 67- 69
YU Nan-yang, MEI Yuan-gui Study on main parameters effecting pressure transients while train passing through tunnel[J]. China Railway Science, 2003, 24 (6): 67- 69
doi: 10.3321/j.issn:1001-4632.2003.06.016
[10]   张光鹏, 雷波 计算高速列车车内压力的热力学模型[J]. 铁道学报, 2006, 28 (1): 35- 38
ZHANG Guang-peng, LEI Bo The thermal dynamics model for calculating the interior pressure of high speed trains[J]. Journal of the China Railway Society, 2006, 28 (1): 35- 38
doi: 10.3321/j.issn:1001-8360.2006.01.008
[11]   陈春俊, 聂锡成, 唐猛 车外空气压力作用下的CRH2型动车组车内空气压力传递函数模型[J]. 中国铁道科学, 2013, 34 (4): 84- 88
CHEN Chun-jun, NIE Xi-cheng, TANG Meng Transfer function model of the air pressure inside CRH2 EMU under outside air pressure[J]. China Railway Science, 2013, 34 (4): 84- 88
doi: 10.3969/j.issn.1001-4632.2013.04.14
[12]   中华人民共和国铁道部. 动车组列车密封设计及试验规范: TB/T 3250—2010 [S]. 北京: 中国铁道出版社, 2011.
[13]   NAM S W A study on estimation of air tightness for train[J]. Journal of Korean Society for Railway, 2016, 19 (5): 576- 584
doi: 10.7782/JKSR.2016.19.5.576
[14]   梅元贵, 张成玉, 周朝晖, 等 单列高速列车通过特长隧道时耳感不适问题研究[J]. 机械工程学报, 2015, 51 (14): 100- 107
MEI Yuan-gui, ZHANG Cheng-yu, ZHOU Chao-hui, et al Research on the aural discomfort when a single train passes through a super long tunnel[J]. Journal of Mechanical Engineering, 2015, 51 (14): 100- 107
doi: 10.3901/JME.2015.14.100
[15]   李国清, 李明, 郭伟, 等 高速综合检测列车头车气密性评估[J]. 机车电传动, 2012, (3): 45- 48
LI Guo-qing, LI Ming, GUO Wei, et al Leading car air tightness assessment of high-speed inspection train[J]. Electric Drive for Locomotives, 2012, (3): 45- 48
doi: 10.3969/j.issn.1000-128X.2012.03.013
[16]   SIMA M, BARBONE L, GALEAZZO G, et al. Dynamic pressure tightness of very high speed train TR1000/V300 ZEFIRO [C]// Proceeding of the 11th World Congress on Railway Research. Milano: IEEJ, 2016: 1-6.
[17]   LIU T H, CHEN M Y, CHEN X D, et al Field test measurement of the dynamic tightness performance of high-speed trains and study on its influencing factors[J]. Measurement, 2019, 138 (1): 602- 613
[18]   张芯茹, 余以正, 梅元贵 更高速度下京沪高铁列车整车时间常数动态气密性阈值初探[J]. 铁道机车车辆, 2019, 39 (2): 113- 118
ZHANG Xin-ru, YU Yi-zheng, MEI Yuan-gui Preliminary study on dynamic air tightness threshold of time constant of Beijing-Shanghai high-speed railway train at higher speed[J]. Railway Locomotive and CAR, 2019, 39 (2): 113- 118
doi: 10.3969/j.issn.1008-7842.2019.02.25
[19]   李田, 戴志远, 张继业, 等 列车气密性静态泄漏理论模型与计算[J]. 交通运输工程学报, 2020, 20 (1): 150- 158
LI Tian, DAI Zhi-yuan, ZHANG Ji-ye, et al Theoretical model and calculation of static leakage for train air tightness[J]. Journal of Traffic and Transportation Engineering, 2020, 20 (1): 150- 158
[20]   万有财, 李明, 张雷, 等 京沪高铁隧道背景下列车车体动态气密性当量泄漏面积阈值特征[J]. 振动与冲击, 2021, 40 (1): 29- 38
WAN You-cai, LI Ming, ZHANG Lei, et al Threshold characteristics of equivalent leakage area of train body dynamic air tightness under background of Beijing-Shanghai high speed railway tunnels[J]. Journal of Vibration and Shock, 2021, 40 (1): 29- 38
[21]   梅元贵, 王瑞丽, 许建林, 等 高速列车进入隧道诱发初始压缩波效应的数值模拟[J]. 计算力学学报, 2016, 33 (1): 95- 102
MEI Yuan-gui, WANG Rui-li, XU Jian-lin, et al Numerical simulation of initial compression wave induced by a high-speed train moving into a tunnel[J]. Chinese Journal of Computational Mechanics, 2016, 33 (1): 95- 102
doi: 10.7511/jslx201601015
[22]   梅元贵, 周朝晖, 许建林. 高速铁路隧道空气动力学[M]. 北京: 科学出版社, 2009.
[23]   张也影. 流体力学[M]. 北京: 高等教育出版社, 1999.
[24]   王建宇, 万晓燕, 吴剑 高速铁路隧道内瞬变气压和乘车舒适度准则[J]. 现代隧道技术, 2008, 45 (2): 1- 10
WANG Jian-yu, WAN Xiao-yan, WU Jian Air pressure transient in high speed railway tunnels and passenger comfort criteria[J]. Modern Tunneling Technology, 2008, 45 (2): 1- 10
doi: 10.3969/j.issn.1009-6582.2008.02.001
[1] Guo-shou ZHAO,Rui WU,Bang-xiang CHE,Lin-lin CAO,Da-zhuan WU. Blade cavitation control by obstacles in axial-flow pump[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 742-749.
[2] Yi-zhe MAO,Guo-fang GONG,Xing-hai ZHOU,Fei WANG. Identification of TBM surrounding rock based on Markov process and deep neural network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 448-454.
[3] Yun-liang CUI,Zhi-yuan LI,Gang WEI,Jiang CHEN,Lian-ying ZHOU. Pre-protection effect of underground comprehensive pipe gallery over proposed tunnel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 330-337.
[4] Hong-wei YING,Kang CHNEG,Jian-lin YU,Ri-qing XU,Zhi-jian QIU,Xiao-bo ZHAN,Jian-she QIN,Chun-hui LOU. Prediction of shield tunnel displacement due to adjacent basement excavation considering continuous deformation of ground[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 318-329.
[5] Guo-hui SHEN,Yu-nan BAO,Yong GUO,Gang SONG,Yi-wen WANG. Along-line wind loads and distribution patterns of transmission lines[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1658-1665.
[6] Qi WANG,Kun XIE,Yan MA,Qun CONG. Detection of DNS tunnels based on log statistics feature[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1753-1760.
[7] Fei WANG,Guo-fang GONG,Li-wen DUAN,Yong-feng QIN. XGBoost based intelligent determination system design of tunnel boring machine operation parameters[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 633-641.
[8] Wei-ming HUANG,Jin-chang WANG,Ri-qing XU,Zhong-xuan YANG,Rong-qiao XU. Structural analysis of shield tunnel lining using theory of curved beam resting on elastic foundation[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 787-795.
[9] Lu CAI,Tian LI,Ji-ye ZHANG. Numerical study on deposition characteristics of snow particle on bogie of high-speed train[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 804-815.
[10] Can WANG,Dao-sheng LING,Heng-yu WANG. Influence of soft clay structure on pit excavation and adjacent tunnels[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 264-274.
[11] Zi-xin ZHANG,Jia-qi ZHANG,Xin HUANG,Qian-wei ZHUANG. Experimental study on prediction of long-term durability of sealing gasket of shield tunnel[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 118-125.
[12] Yan-hong SUN,Jie ZHANG,Jian HAN,Yang GAO,Xin-biao XIAO. Sound transmission characteristics of silencer in wind ducts of high-speed train[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1389-1397.
[13] Hao-su LIU,Jun-qing LEI. Identification of three-component coefficients of double deck truss girder for long-span bridge[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1092-1100.
[14] Yu-xi CHEN,Guo-fang GONG,Zhuo SHI,Hua-yong YANG. Coordinated control of gripper and thrust system for TBM based on construction data[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 250-257.
[15] Yan-chao TIAN,Fei HE,Xiao ZHANG. Adaptive design of shield radius for open type hard rock TBM[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2280-2288.