Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (5): 947-955    DOI: 10.3785/j.issn.1008-973X.2022.05.012
    
Coupled analysis on surface runoff and soil water movement by finite volume method
Gen LI(),Tong-chun HAN*(),Jun-yang WU,Yu ZHANG
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(1594KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Coupled analysis on the surface runoff model and the soil water movement model was carried out, in order to consider the influence of surface runoff under heavy rainfall condition on soil infiltration. The surface runoff was simulated using the Navier-Stokes equation, while the soil water movement was simulated using the Richards equation. Both equations were solved by the finite volume method. The simulation results of coupled model were compared with the calculated results of SEEP/W under the same calculation condition, in order to verify the correctness of the coupled model. And then the soil slope infiltration was calculated under heavy rainfall condition. Results show that water heads at the crest of slope and the base of slope are significantly different and the infiltration depths at the crest of slope and the base of slope are also different, which implies that the soil infiltration can be greatly improved by the surface runoff. The soil slope infiltration intensity is indeed increased with the increasement of the surface runoff.



Key wordssurface runoff      soil infiltration      numerical simulation      finite volume method      coupled model     
Received: 28 April 2021      Published: 31 May 2022
CLC:  TU 46  
Fund:  浙江省自然科学基金资助项目(LY18E080006)
Corresponding Authors: Tong-chun HAN     E-mail: 2892214763@qq.com;htc@zju.edu.cn
Cite this article:

Gen LI,Tong-chun HAN,Jun-yang WU,Yu ZHANG. Coupled analysis on surface runoff and soil water movement by finite volume method. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 947-955.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.05.012     OR     https://www.zjujournals.com/eng/Y2022/V56/I5/947


基于有限体积法的地表径流与土壤水流耦合分析

为了考虑强降雨条件下地表径流对土体入渗的影响,将地表径流模型同土壤水流模型进行耦合分析. 采用Navier-Stokes方程模拟地表径流,采用Richards方程模拟土壤水流,2种方程均采用有限体积法求解. 在相同计算条件下,将耦合模型数值模拟结果与SEEP/W计算结果进行对比,以验证耦合模型的正确性,根据耦合模型计算边坡在强降雨条件下的入渗情况. 研究发现,在地表径流条件下,边坡坡顶和坡底水头相差较大,坡顶和坡底入渗深度存在明显差异,说明地表径流对土体的入渗有着较大的提高. 研究表明,随着地表径流的增强,土坡入渗强度提高.


关键词: 地表径流,  土体入渗,  数值模拟,  有限体积法,  耦合模型 
Fig.1 One-dimensional surface runoff conceptual model
Fig.2 Space and time discretization of surface runoff equation
Fig.3 Mesh relationship of adjacent control units
Fig.4 Non-orthogonality mesh vector of adjacent control units
Fig.5 Couple steps of surface runoff and soil water movement
Fig.6 Case result comparison of coupled model and SEEP/W under same fixed head condition
Fig.8 Case result comparison of coupled model and SEEP/W under same fixed flux condition
Fig.7 Numerical simulation distribution diagram of soil column initial water head
Fig.9 Numerical simulation size of soil slope
Fig.10 Variation of numerical rainfall intensity over time
Fig.11 Water head of slope top at profile A-A and B-B over time
Fig.12 Water head of slope surface over time
Fig.13 Infiltration at profile A-A and B-B at time of 3 h
[1]   FU J, HUANG S L, DING X, et al Influence of rainfall on transient seepage field of deep landslides: a case study of area II of Jinpingzi landslide[J]. IOP Conference Series: Earth and Environmental Science, 2020, 570 (2): 022056
doi: 10.1088/1755-1315/570/2/022056
[2]   XIONG X, SHI Z, XIONG Y, et al Unsaturated slope stability around the Three Gorges Reservoir under various combinations of rainfall and water level fluctuation[J]. Engineering Geology, 2019, 261: 105231
doi: 10.1016/j.enggeo.2019.105231
[3]   袁俊平, 殷宗泽 考虑裂隙非饱和膨胀土边坡入渗模型与数值模拟[J]. 岩土力学, 2004, 25 (10): 1581- 1586
YUAN Jun-ping, YIN Zong-ze Numerical model and simulation of expensive soils slope infiltration considered fissures[J]. Rock and Soil Mechanics, 2004, 25 (10): 1581- 1586
doi: 10.3969/j.issn.1000-7598.2004.10.014
[4]   张培文, 刘德富, 黄达海, 等 饱和-非饱和非稳定渗流的数值模拟[J]. 岩土力学, 2003, (6): 927- 930
ZHANG Pei-wen, LIU De-fu, HUANG Hai-da, et al Saturated and unsaturated unsteady seepage flow numerical simulation[J]. Rock and Soil Mechanics, 2003, (6): 927- 930
doi: 10.3969/j.issn.1000-7598.2003.06.011
[5]   ZHAO R J The Xinanjiang model applied in China[J]. Journal of Hydrology, 1992, 135 (1−4): 371- 381
doi: 10.1016/0022-1694(92)90096-E
[6]   WANG Z J, TIMLIN D, KOUZNETSOV M, et al Coupled model of surface runoff and surface-subsurface water movement[J]. Advances in Water Resources, 2020, 137: 103499
doi: 10.1016/j.advwatres.2019.103499
[7]   ZHANG H, ZHANG F, SHEN K, et al A surface and subsurface model for the simulation of rainfall infiltration in slopes[J]. IOP Conference Series: Earth and Environmental Science, 2015, 26 (1): 012025
[8]   刘育田, 刘俊新 地表径流与地下渗流耦合的斜坡降雨入渗研究[J]. 路基工程, 2010, (3): 80- 82
LIU Yu-tian, LIU Jun-xin The study of the slope rainfall infiltration considered the couple of surface runoff and subsurface water movement[J]. Subgrade Engineering, 2010, (3): 80- 82
doi: 10.3969/j.issn.1003-8825.2010.03.031
[9]   汤有光, 郭轶锋, 吴宏伟, 等 考虑地表径流与地下渗流耦合的斜坡降雨入渗研究[J]. 岩土力学, 2004, (9): 1347- 1352
TANG You-guang, GUO Yi-feng, WU Hong-wei, et al the study of slope rainfall infiltration considered surface surface and subsurface water movement[J]. Rock and Soil Mechanics, 2004, (9): 1347- 1352
[10]   TAN J, SONG H, ZHANG H, et al Numerical investigation on infiltration and runoff in unsaturated soils with unsteady rainfall intensity[J]. Water, 2018, 10 (7): 914
doi: 10.3390/w10070914
[11]   JOHNSON M, LOAICIGA H, WANG X X Coupled infiltration and kinematic-wave runoff simulation in slopes: implications for slope stability[J]. Water, 2017, 9 (5): 327
doi: 10.3390/w9050327
[12]   ZHU Y L, LSHIKAWA T, SUBRAMANIAN S S, et al Simultaneous analysis of slope instabilities on a small catchment-scale using coupled surface and subsurface flows[J]. Engineering Geology, 2020, 275: 105750
doi: 10.1016/j.enggeo.2020.105750
[13]   PATO F J, ARANDA M S, NAVARRO G P A 2D finite volume simulation tool to enable the assessment of combined hydrological and morphodynamical processes in mountain catchments[J]. Advances in Water Resources, 2020, 141: 103617
doi: 10.1016/j.advwatres.2020.103617
[14]   PATO F J, VOULLIEME C D, NAVARRO G P Rainfall/runoff simulation with 2D full shallow water equations: sensitivity analysis and calibration of infiltration parameters[J]. Journal of Hydrology, 2016, 536: 496- 513
doi: 10.1016/j.jhydrol.2016.03.021
[15]   DELESTRE O, DARBOUX F, JAMES F, et al FullSWOF: a free software package for the simulation of shallow water flows[J]. EprintArxiv, 2014, 480 (10): 233- 265
[16]   BOICHUT F. Nonlinear stability of finite volume methods for hyperbolic conservation laws [M]. Berlin: Springer Science and Business Media, 2004.
[17]   GODLEWSKI E, RAVIART P. Numerical approximation of hyperbolic systems of conservation laws [M]. Berlin: Springer, 2013.
[18]   CHOW V T. Open-channel hydraulics [M]. New York: McGraw-Hill, 1959.
[19]   GREENBERG J, LEROUX A A well-balanced scheme for the numerical processing of source terms in hyperbolic equations[J]. SIAM Journal on Numerical Analysis, 1996, 33 (1): 1- 16
doi: 10.1137/0733001
[20]   AUDUSSE E, BOUCHUT F, BRISTEAU M, et al A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows[J]. SIAM Journal on Scientific Computing, 2004, 25 (6): 2050- 2065
doi: 10.1137/S1064827503431090
[21]   FIEDLER F, RAMIREZ J A numerical method for simulating discontinuous shallow flow over an infiltrating surface[J]. International Journal for Numerical Methods in Fluids, 2000, 32 (2): 219- 239
doi: 10.1002/(SICI)1097-0363(20000130)32:2<219::AID-FLD936>3.0.CO;2-J
[22]   RICHARDS L Capillary conduction of liquids through porous mediums[J]. Physics, 1931, 1 (5): 318- 333
doi: 10.1063/1.1745010
[23]   MCBRIDE D, CROSS M, CROFT N, et al Computational modelling of variably saturated flow in porous media with complex three-dimensional geometries[J]. International Journal for Numerical Methods in Fluids, 2006, 50 (9): 1085- 1117
doi: 10.1002/fld.1087
[24]   HILLS R, PORRO L, HUDSON D, et al Modeling one-dimensional infiltration into very dry soils: 1. model development and evaluation[J]. Water Resources Research, 1989, 25 (6): 1259- 1269
doi: 10.1029/WR025i006p01259
[25]   HAO X, ZHANG R, KRAVCHENKO A A mass-conservative switching method for simulating saturated-unsaturated flow[J]. Journal of Hydrology, 2005, 311 (1–4): 254- 265
doi: 10.1016/j.jhydrol.2005.01.019
[26]   JASAK H. Error analysis and estimation for the finite volume method with applications to fluid flows[D]. London: Imperial College London, 1996.
[27]   CELIA M, BOULOUTAS E, ZARBA R A general mass-conservative numerical solution for the unsaturated flow equation[J]. Water Resources Research, 1990, 26 (7): 1483- 1496
doi: 10.1029/WR026i007p01483
[28]   Van GENUCHTEN M T A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44 (5): 892- 898
doi: 10.2136/sssaj1980.03615995004400050002x
[1] Meng-fan LIU,Gang-feng WU,Ke-feng ZHANG,Ping DONG. 2D non-cohesive earthen embankment breach model based on linear erosion formula[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 569-578.
[2] Shuai-ling GAO,Jun-qiang XIA,Bo-liang DONG,Mei-rong ZHOU,Jing-ming HOU. Mathematical model for urban flooding with effect of drainage of street inlets[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 590-597.
[3] Chao JI,Qing-he ZHANG,Dian-guang MA,Yue-feng WU,Qi JIANG. Nearshore coupled wave-current model based on new three-dimensional radiation stress formulation[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 128-136.
[4] Jun ZHANG,Yu-min CUI,Hong-zhou HE. Numerical calculation model on discrete droplet deformation in liquid-liquid system under electric field[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1391-1398.
[5] Jia-hao REN,Hai-ou WANG,Jiang-kuan XING,Kun LUO,Jian-ren FAN. Lower-dimensional approximation models of tangential strain rate of turbulent flames[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1128-1134.
[6] Meng-ting YU,Ying-ping WANG,Chu-qi SU,Qi TAO,Jian-peng SHI. Research on fuel economy of car trailing semitrailer in platoon[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 455-461.
[7] Yun-liang CUI,Zhi-yuan LI,Gang WEI,Jiang CHEN,Lian-ying ZHOU. Pre-protection effect of underground comprehensive pipe gallery over proposed tunnel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 330-337.
[8] Chao-feng ZENG,Shuo WANG,Zhi-cheng YUAN,Xiu-li XUE. Characteristics of ground deformation induced by pre-excavation dewatering considering blocking effect of adjacent structure[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 338-347.
[9] Wei-guo ZHAO,Jia-jia LU,Fu-rong ZHAO. Cavitation control of centrifugal pump based on gap jet principle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1785-1794.
[10] Song-song YANG,Mei WANG,Jian-an DU,Yong GUO,Yan GEN. Influence of construction sequence of pipe jacking by pipe-roof pre-construction method on ground surface settlement[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1706-1714.
[11] Wei LI,Ji-yu ZOU,Peng HU. Urban flood simulation based on porosity and local time step[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 614-622.
[12] Ya-bo YU,Ya-dong DENG. Hydrogen leakage and diffusion of high voltage cabin of fuel cell bus[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 381-388.
[13] Zhong YUN,Meng WEN,Zi-rong LUO,Long CHEN. Design and plunge-diving analysis of underwater-aerial transmedia vehicle of bionic kingfisher[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 407-415.
[14] Si-yuan XU,Jun DU,Guang-xi ZHAO,Zheng-ying WEI. Droplet transfer behavior in fused-deposition of 45 steel/tin lead alloy bimetallic structures[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2224-2232.
[15] Yu-qi ZHANG,Nan JIANG,Yong-sheng JIA,Chuan-bo ZHOU,Xue-dong LUO,Ting-yao WU. Blasting vibration characteristics of high-density polyethylene pipes in operation water-filled state[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2120-2127.