Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (3): 590-597    DOI: 10.3785/j.issn.1008-973X.2022.03.018
    
Mathematical model for urban flooding with effect of drainage of street inlets
Shuai-ling GAO1(),Jun-qiang XIA1,*(),Bo-liang DONG1,Mei-rong ZHOU1,Jing-ming HOU2
1. State Key Laboratory of Water Resource and Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China
2. State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
Download: HTML     PDF(22421KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A two-dimensional hydrodynamic model including the discharge calculation module of street inlets was established, in order to study the effect of drainage of street inlets on urban flooding. The model was calibrated and verified by the flume test data with typical block structure. The Nash-Sutcliffe efficiency coefficient of most gauging points (over 85% of the points) was above 0.77. The model was applied to an urban street block in Glasgow, UK, and the maximum difference of the total drainage volume of street inlets calculated by the integrated velocity formula and the orifice-weir flow formula account for 26.5% of the total water volume. The former, considering the limiting effect of the side branch pipe on the discharge capacity of street inlets, is more in line with the actual situation. Compared with the case without street inlets draining, the calculation results which applied the integrated velocity formula show that the maximum water depth on the main road and the maximum submergence range is reduced by 0.395 m and 29.4% respectively, and the arrival time of the flood wave at the maximum water depth is delayed by 100 s.



Key wordsurban flood      numerical simulation      hydrodynamic model      street inlet      discharge formula     
Received: 29 March 2021      Published: 29 March 2022
CLC:  TV 131.4  
  TU 992  
Fund:  国家自然科学基金资助项目(41890823);牛顿高级学者基金资助项目(NSFC52061130219+NAF\R11156)
Corresponding Authors: Jun-qiang XIA     E-mail: gaoshuailing@whu.edu.cn;xiajq@whu.edu.cn
Cite this article:

Shuai-ling GAO,Jun-qiang XIA,Bo-liang DONG,Mei-rong ZHOU,Jing-ming HOU. Mathematical model for urban flooding with effect of drainage of street inlets. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 590-597.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.03.018     OR     https://www.zjujournals.com/eng/Y2022/V56/I3/590


雨水口泄流对城市洪涝影响的数学模型

为了研究雨水口泄流对城市洪涝的影响,建立包含雨水口泄流计算模块的平面二维水动力学模型. 采用典型街区结构的水槽试验数据对模型进行率定和验证,超过85%的测点纳什效率系数大于0.77. 将模型应用到英国Glasgow的城市街区,采用综合流速公式和孔流堰流公式计算的排水总量最大差值占总水量的26.5%,前者考虑侧支管对雨水口泄流能力的限制作用,更符合实际情况. 与不考虑雨水口泄流相比,采用综合流速公式计算雨水口泄流后,最大淹没范围减少29.4 %,主干道上最大积水水深减小0.395 m,最大积水水深处的洪水波到达时间延后100 s.


关键词: 城市洪涝,  数值模拟,  水动力学模型,  雨水口,  泄流公式 
Fig.1 Discharge capacity of flat street inlets
Fig.2 Schematic layout of flood inundation laboratory model
Fig.3 Comparison of calculated and measured water depth hydrographs at different gauging stations
Fig.4 Simulated surface water depth, discharge and total drainage volume with different discharge formulas of street inlets
Fig.5 Location and quantity of street inlets in one block of Glasgow, UK[20]
Fig.6 Comparisons of water depth at different monitoring points with or without street inlets draining
Fig.7 Comparisons of velocity at waterlogged points with or without street inlets draining
Fig.8 Maximum submerged area and corresponding water depth distribution within 0~2 hours with or without street inlets draining
状态 Smax S0.5 S1
m2
无雨水口 79 784 72 156 7 628
式(5)计算雨水口泄流 56 360 55 416 944
Tab.1 Variation of submerged area within 0~2 hours with or without street inlets draining
[1]   CRED. EM-DAT [DB/OL]. [2021-02-19]. https://public.emdat.be/data.
[2]   赵江, 张林洪, 吴培关, 等 公路雨水口篦子泄水量试验研究[J]. 城市道桥与防洪, 2004, (4): 67- 70
ZHAO Jiang, ZHANG Lin-hong, WU Pei-guan, et al Study on test of sluice capacity of double-edged fine-toothed comb at rainfall inlet at highway[J]. Urban Roads Bridges and Flood Control, 2004, (4): 67- 70
doi: 10.3969/j.issn.1009-7716.2004.04.018
[3]   陈倩, 夏军强, 董柏良 城市洪涝中雨水口泄流能力的试验研究[J]. 水科学进展, 2020, 31 (1): 10- 17
CHEN Qian, XIA Jun-qiang, DONG Bo-liang Experimental study on discharge capacity of street inlet in urban flooding[J]. Advances in Water Science, 2020, 31 (1): 10- 17
[4]   PALLA A, COLLI M, CANDELA A, et al Pluvial flooding in urban areas: the role of surface drainage efficiency[J]. Journal of Flood Risk Management, 2018, 11: S663- S676
doi: 10.1111/jfr3.12246
[5]   胡伟贤, 何文华, 黄国如, 等 城市雨洪模拟技术研究进展[J]. 水科学进展, 2010, 21 (1): 137- 144
HU Wei-xian, HE Wen-hua, HUANG Guo-ru, et al Review of urban storm water simulation techniques[J]. Advances in Water Science, 2010, 21 (1): 137- 144
[6]   夏军强, 王光谦, 谈广鸣 复杂边界及实际地形上溃坝洪水流动过程模拟[J]. 水科学进展, 2010, 21 (3): 289- 298
XIA Jun-qiang, WANG Guang-qian, TAN Guang-ming Two-dimensional modeling of dam-break floods over actual terrain with complex geometries using a finite volume method[J]. Advances in Water Science, 2010, 21 (3): 289- 298
[7]   刘璐, 孙健, 袁冰, 等 城市暴雨地表积水过程研究: 以清华大学校园为例[J]. 水力发电学报, 2019, 38 (8): 98- 109
LIU Lu, SUN Jian, YUAN Bing, et al Surface flooding in urban areas under heavy downpours: case study of Tsinghua University campus[J]. Journal of Hydroelectric Engineering, 2019, 38 (8): 98- 109
doi: 10.11660/slfdxb.20190809
[8]   LIANG D F, LIN B L, FALCONER R A Simulation of rapidly varying flow using an efficient TVD-MacCormack scheme[J]. International Journal for Numerical Methods in Fluids, 2007, 53 (5): 811- 826
doi: 10.1002/fld.1305
[9]   NOH S J, LEE S, AN H, et al Ensemble urban flood simulation in comparison with laboratory-scale experiments: impact of interaction models for manhole, sewer pipe, and surface flow[J]. Advances in Water Resources, 2016, 97: 25- 37
doi: 10.1016/j.advwatres.2016.08.015
[10]   胡维芬. 城市道路排水设施水力特性研究[D]. 天津: 天津大学, 2009: 12-25.
HU Wei-fen. Research on the hydraulic characteristics of drainage facilities of the urban road [D]. Tianjin: Tianjin University, 2009: 12-25.
[11]   安智敏, 岑国平, 吴彰春 雨水口泄水量的试验研究[J]. 中国给水排水, 1995, 11 (1): 21- 24
AN Zhi-min, CEN Guo-ping, WU Zhang-chun Experimental study on the capacity of storm inlets[J]. China Water and Wastewater, 1995, 11 (1): 21- 24
[12]   姚飞骏 雨水口的流量计算方法探讨[J]. 中国给水排水, 2013, 29 (14): 45- 48
YAO Fei-jun Discussion on calculation method of flow rate at rainwater inlet[J]. China Water and Wastewater, 2013, 29 (14): 45- 48
doi: 10.3969/j.issn.1000-4602.2013.14.012
[13]   GóMEZ M, RUSSO B Methodology to estimate hydraulic efficiency of drain inlets[J]. Proceedings of the Institution of Civil Engineers-Water Management, 2011, 164 (2): 81- 90
doi: 10.1680/wama.900070
[14]   北京市市政工程设计研究总院有限公司. 雨水口(16S518): GJBT—1404[S]. 北京: 中国计划出版社, 2016: 66.
[15]   HUNTER N M, BATES P D, NEELZ S, et al Benchmarking 2D hydraulic models for urban flooding[J]. Proceedings of the Institution of Civil Engineers: Water Management, 2008, 161 (1): 13- 30
doi: 10.1680/wama.2008.161.1.13
[16]   谭维炎. 计算浅水动力学—有限体积法[M]. 北京: 清华大学出版社, 1998: 107.
[17]   HARTEN A High resolution scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 1983, 49 (3): 357- 393
doi: 10.1016/0021-9991(83)90136-5
[18]   DONG B L, XIA J Q, ZHOU M R, et al Experimental and numerical model studies on flash flood inundation processes over a typical urban street[J]. Advances in Water Resources, 2021, 147: 103824
doi: 10.1016/j.advwatres.2020.103824
[19]   LIANG D F, FALCONER R A, LIN B L Coupling surface and subsurface flows in a depth averaged flood wave model[J]. Journal of Hydrology, 2007, 337 (1/2): 147- 158
[1] Meng-fan LIU,Gang-feng WU,Ke-feng ZHANG,Ping DONG. 2D non-cohesive earthen embankment breach model based on linear erosion formula[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 569-578.
[2] Jun ZHANG,Yu-min CUI,Hong-zhou HE. Numerical calculation model on discrete droplet deformation in liquid-liquid system under electric field[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1391-1398.
[3] Jia-hao REN,Hai-ou WANG,Jiang-kuan XING,Kun LUO,Jian-ren FAN. Lower-dimensional approximation models of tangential strain rate of turbulent flames[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1128-1134.
[4] Meng-ting YU,Ying-ping WANG,Chu-qi SU,Qi TAO,Jian-peng SHI. Research on fuel economy of car trailing semitrailer in platoon[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 455-461.
[5] Yun-liang CUI,Zhi-yuan LI,Gang WEI,Jiang CHEN,Lian-ying ZHOU. Pre-protection effect of underground comprehensive pipe gallery over proposed tunnel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 330-337.
[6] Chao-feng ZENG,Shuo WANG,Zhi-cheng YUAN,Xiu-li XUE. Characteristics of ground deformation induced by pre-excavation dewatering considering blocking effect of adjacent structure[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 338-347.
[7] Gong CHEN,Chun-hua ZHENG,Xian-ming WENG,Baustani HAMEED,Hong-hao HU,Xiao-yu MA,Jing-qing LIU. Diagnosis of road drainage inlets’ abnormal condition using multi-hydrological data association analysis[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 55-61.
[8] Wei-guo ZHAO,Jia-jia LU,Fu-rong ZHAO. Cavitation control of centrifugal pump based on gap jet principle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1785-1794.
[9] Song-song YANG,Mei WANG,Jian-an DU,Yong GUO,Yan GEN. Influence of construction sequence of pipe jacking by pipe-roof pre-construction method on ground surface settlement[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1706-1714.
[10] Wei LI,Ji-yu ZOU,Peng HU. Urban flood simulation based on porosity and local time step[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 614-622.
[11] Ya-bo YU,Ya-dong DENG. Hydrogen leakage and diffusion of high voltage cabin of fuel cell bus[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 381-388.
[12] Zhong YUN,Meng WEN,Zi-rong LUO,Long CHEN. Design and plunge-diving analysis of underwater-aerial transmedia vehicle of bionic kingfisher[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 407-415.
[13] Yu-qi ZHANG,Nan JIANG,Yong-sheng JIA,Chuan-bo ZHOU,Xue-dong LUO,Ting-yao WU. Blasting vibration characteristics of high-density polyethylene pipes in operation water-filled state[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2120-2127.
[14] Si-yuan XU,Jun DU,Guang-xi ZHAO,Zheng-ying WEI. Droplet transfer behavior in fused-deposition of 45 steel/tin lead alloy bimetallic structures[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2224-2232.
[15] Hao-su LIU,Jun-qing LEI. Identification of three-component coefficients of double deck truss girder for long-span bridge[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1092-1100.