Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (7): 1391-1398    DOI: 10.3785/j.issn.1008-973X.2021.07.018
    
Numerical calculation model on discrete droplet deformation in liquid-liquid system under electric field
Jun ZHANG1,2(),Yu-min CUI1,2,Hong-zhou HE1,2
1. School of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen 361021, China
2. Fujian Province Key Laboratory of Energy Cleaning Utilization and Development, Jimei University, Xiamen 361021, China
Download: HTML     PDF(981KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Based on the idea of element deformation, a numerical calculation model on droplet deformation in the electric field was established, from the element conservation equation. The model was coupled with the dipole model, and a calculation method on droplet coalescence was also proposed. Based on the established model and calculation method, a numerical calculation program was compiled the deformation and coalescence of droplets under several parameters were simulated. Results show that the prediction of droplet deformation is in good agreement with the experiment, the prediction of droplet coalescence is roughly consistent with the experiment and the predicted coalescence time is slightly lower than the experimental value. If the modeling accuracy of element resistance and the discrete accuracy of element are further improved, the model will have better applicability. The simulation results also show that the present model can be also used to predict the oblate deformation of droplets. The work has an active role for the theoretical analysis and numerical simulation of droplet deformation.



Key wordsdroplet deformation      liquid-liquid system      numerical simulation      model      droplet coalescence     
Received: 12 May 2020      Published: 05 July 2021
CLC:  TQ 021.1  
Fund:  福建省科技计划资助项目(2017H0024)
Cite this article:

Jun ZHANG,Yu-min CUI,Hong-zhou HE. Numerical calculation model on discrete droplet deformation in liquid-liquid system under electric field. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1391-1398.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.07.018     OR     https://www.zjujournals.com/eng/Y2021/V55/I7/1391


电场作用下液液系统中液滴变形的计算模型

基于单元变形的思路,由单元守恒方程出发,建立电场中液滴变形的数值计算模型. 在此基础上,将该模型与偶极模型相耦合,提出液滴聚结的计算方法. 由所建模型及计算方法,编制数值计算程序对几种参数下液滴的变形及聚结进行模拟计算. 结果表明,所建模型对液滴变形的预测与实验结果相符较好,对液滴聚结过程的模拟与实验结果大致相符,预测的聚结时间稍低于实验值. 如果进一步提高单元阻力的模化精度及单元离散精度,所建模型会有较好的适用性. 所建模型可实现对液滴的扁平形变形的预测. 研究结果对液滴电变形的理论分析及数值模拟具有一定的借鉴意义.


关键词: 液滴变形,  液液系统,  数值模拟,  模型,  液滴聚结 
Fig.1 Division of droplet element
Fig.2 Schematic diagram of relationship between droplet elements
Fig.3 Comparison of droplet shape
Fig.4 Droplet coalescence experiment photos of two droplets
Fig.5 Droplet coalescence experimental result prediction
Fig.6 Simulation on oblate deformation of droplet
[1]   TAYLOR G Studies in electrohydrodynamics I: the circulation produced in a drop by electrical field[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1966, 291 (1425): 159- 166
[2]   O'KONSKI C T, JR H C T The distortion of aerosol droplets by an electric field[J]. Journal of Physical Chemistry, 1953, 57 (9): 955- 958
doi: 10.1021/j150510a024
[3]   AJAYI O O A note on Taylor’s electrohydrodynamic theory[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1978, 364 (1719): 499- 507
[4]   EOW J S, GHADIRI M, SHARIF A O, et al Electrostatic enhancement of coalescence of water droplets in oil: a review of the technology[J]. Chemical Engineering Journal, 2002, 85 (3): 357- 368
[5]   DATTA S, MA Y, DAS A K, et al Investigation of droplet coalescence propelled by dielectrophoresis[J]. AIChE Journal, 2018, 65 (2): 829- 839
[6]   VO Q, SU H, TRAN T Universal transient dynamics of electrowetting droplets[J]. Scientific Reports, 2018, 8 (1): 1- 7
[7]   YAN H, HE L, LUO X, et al The study of deformation characteristics of polymer droplet under electric field[J]. Colloid and Polymer Science, 2015, 293: 2045- 2052
doi: 10.1007/s00396-015-3597-5
[8]   WU C, KAGEYAMA K Fabrication and characterization of silica-aggregate electret with improved wettability of the PFA and the colloidal silica[J]. IEEJ Transactions on Sensors and Micromachines, 2017, 137 (7): 205- 211
doi: 10.1541/ieejsmas.137.205
[9]   ZHANG J, HE H, HUANG G Dynamic characteristics of charged droplets in an electrostatic spraying process with twin capillaries[J]. Chinese Journal of Chemical Engineering, 2018, 26: 2403- 2411
doi: 10.1016/j.cjche.2018.03.006
[10]   SHERWOOD J D Breakup of fluid droplets in electric and magnetic fields[J]. Journal of Fluid Mechanics, 1988, 188: 133- 146
doi: 10.1017/S0022112088000667
[11]   BASARAN O A, PATZEK T W, BENNER R E, et al Nonlinear oscillations and breakup of conducting, inviscid drops in an externally applied electric field[J]. Industrial and engineering chemistry research, 1995, 34 (10): 3454- 3465
doi: 10.1021/ie00037a034
[12]   BAYGENTS J C, RIVETTE N J, STONE H A Electrohydrodynamic deformation and interaction of drop pairs[J]. Journal of Fluid Mechanics, 1998, 368: 359- 375
doi: 10.1017/S0022112098001797
[13]   危卫, 张云伟, 顾兆林 电场作用下电流变液滴的变形及力学行为[J]. 科学通报, 2013, 58 (3): 197- 205
WEI Wei, ZHANG Yun-wei, GU Zhao-lin Deformation and mechanical behavior of electrohydrodynamic droplet under external electric field[J]. Chinese Science Bulletin, 2013, 58 (3): 197- 205
doi: 10.1360/972012-107
[14]   WANG B B, WANG X D, YAN W M, et al Molecular dynamics simulations on coalescence and non-coalescence of conducting droplets[J]. Langmuir, 2015, 31 (27): 7457- 7462
doi: 10.1021/acs.langmuir.5b01574
[15]   HE X, WANG S L, YANG Y R, et al Electro-coalescence of two charged droplets under pulsed direct current electric fields with various waveforms: a molecular dynamics study[J]. Journal of Molecular Liquids, 2020, 312: 113429
doi: 10.1016/j.molliq.2020.113429
[16]   白莉, 倪玲英, 郭长会, 等 乳状液液滴在高压直流电场中的变形与破裂分析[J]. 应用力学学报, 2013, 30 (1): 76- 79
BAI Li, NI Ling-ying, GUO Chang-hui, et al Numerical analysis of deformation and break-up of aqueous drop of water-in-oil emulsion in high voltage D. C. fields[J]. Chinese Journal of Applied Mechanics, 2013, 30 (1): 76- 79
doi: 10.11776/cjam.30.01.D005
[17]   张军, 何宏舟, 黄冠星 均匀电场中液滴变形特性的耗散粒子动力学模拟[J]. 化工学报, 2014, 65 (10): 3872- 3877
ZHANG Jun, HE Hong-zhou, HUANG Guan-xing Simulation of droplet deformation in uniform electric field with dissipative particle dynamics approach[J]. Journal of Industry and Engineering, 2014, 65 (10): 3872- 3877
doi: 10.3969/j.issn.0438-1157.2014.10.017
[18]   陈庆国, 宋春辉, 梁雯, 等 非均匀和均匀电场下液滴的形变及运动行为[J]. 高电压技术, 2016, 42 (3): 949- 958
CHEN Qing-guo, SONG Chun-hui, LIANG Wen, et al Deformation and motion behavior of water droplet under uniform and non-uniform electric field[J]. High Voltage Engineering, 2016, 42 (3): 949- 958
[19]   王贞涛, 董庆铭, 张永辉, 等 静电场中液滴变形及内部流动的研究[J]. 高校化学工程学报, 2015, 29 (5): 1098- 1105
WANG Zhen-tao, DONG Qing-ming, ZHANG Yong-hui, et al Droplet deformation and its internal flow in electrostatic field[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29 (5): 1098- 1105
doi: 10.3969/j.issn.1003-9015.2015.05.011
[20]   KAZIMIERZ A Interaction of two dielectric or conducting droplets aligned in the uniform electric field[J]. Journal of Electrostatics, 2001, 51-52: 578- 584
doi: 10.1016/S0304-3886(01)00059-6
[21]   ATTEN P, LUNDGAARD L, BERG G A simplified model of electrocoalescence of two close water droplets in oil[J]. Journal of Electrostatics, 2006, 64: 550- 554
doi: 10.1016/j.elstat.2005.10.009
[22]   LIMA N C, D'AVILA M A Numerical simulation of electrohydrodynamic flows of Newtonian and viscoelastic droplets[J]. Journal of Non-Newtonian Fluid Mechanics, 2014, 213: 1- 14
doi: 10.1016/j.jnnfm.2014.08.016
[23]   GUTIERREZ E R, LEDESMA-AGUILAR R A Lattice-Boltzmann simulations of electrowetting phenomena[J]. Langmuir, 2019, 35 (14): 4849- 4859
doi: 10.1021/acs.langmuir.9b00098
[24]   张军, 何宏舟, 电场作用下液滴动力学特性及应用[M]. 北京: 化学工业出版社, 2018: 32-48.
[25]   黄伟峰, 李勇, 刘秋生 格子Boltzmann方法在电流体动力学中的应用: 均匀电场中液滴的变形和失稳[J]. 科学通报, 2007, 52 (11): 1232- 1236
HUANG Wei-feng, LI Yong, LIU Qiu-sheng The electrohydrodynamics application of lattice Boltzmann: the deformation and instability of a drop in a unified electric field[J]. Chinese Science Bulletin, 2007, 52 (11): 1232- 1236
doi: 10.3321/j.issn:0023-074X.2007.11.002
[26]   EOW J S, GHADIRI M, SHARIF A Deformation and break-up of aqueous drops in dielectric liquids in high electric fields[J]. Journal of Electrostatics, 2001, 51: 463- 469
[27]   EOW J S, GHADIRI M Drop–drop coalescence in an electric field: the effects of applied electric field and electrode geometry[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 219 (1-3): 253- 279
[28]   DAVIS M H Two charged spherical conductors in a uniform electric field: forces and field strength[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1964, 17 (4): 499- 511
doi: 10.1093/qjmam/17.4.499
[29]   王亮, 冯永训, 董守平, 等 电场破乳分散相液滴行为研究[J]. 实验流体力学, 2010, 24 (2): 30- 35
WANG Liang, FENG Yong-xun, DONG Shou-ping, et al Investigation on behavior of dispersed phase droplets for the electric demulsification[J]. Journal of Experiments in Fluid Mechanics, 2010, 24 (2): 30- 35
[30]   PEDERSEN A, ILDSTAD E, NYSVEEN A. Forces and movement of water droplets in oil caused by applied electric field[C]// 2004 Annual Report Conference on Electrical Insulation and Dielectric Phenomena. Boulder: IEEE, 2004: 683-687.
[31]   PANCHENKOV G M, VINOGRADOV V M Water-in-oil emulsion in a constant homogeneous electric field[J]. Chemistry and Technology of Fuels and Oils, 1970, 6 (6): 438- 441
doi: 10.1007/BF00718744
[32]   张军, 张园春, 陈智杰, 等 电场作用下油水乳化液中水滴的聚合动力学分析[J]. 农业工程学报, 2016, 32 (23): 284- 289
ZHANG Jun, ZHANG Yuan-chun, CHEN Zhi-jie, et al Coalescence dynamic analysis of water droplets in oil in electric field[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32 (23): 284- 289
doi: 10.11975/j.issn.1002-6819.2016.23.039
[1] Bo-han LENG,Tang-bin XIA,He SUN,Hao WANG,Li-feng XI. Digital twin mapping modeling and method of monitoring and simulation for reconfigurable manufacturing system[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 843-855.
[2] Xiao-long WANG,Hai-feng LV,Jin-ying HUANG,Guang-pu LIU. Model-free feedforward/feedback control scheme for magnetorheological damper[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 873-878.
[3] Chao-bo ZHANG,Yong-zheng LIU,Hong-bo LI,Yang ZHAO,Li-zhu ZHANG,Zi-hao WANG. Weighted residual clustering-based building load prediction interval estimation[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 930-937.
[4] Gen LI,Tong-chun HAN,Jun-yang WU,Yu ZHANG. Coupled analysis on surface runoff and soil water movement by finite volume method[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 947-955.
[5] Shao-xiang CHEN,Zhi-gang CAO,Xing-chi YE,Yuan-qiang CAI,Qi ZHANG. Hypoplastic model for road base coarse-grained materials accounting for temperature effect[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 938-946, 976.
[6] Zhong-hao WANG,Zheng-guo XU,Yun ZHANG. Improved similarity-based modeling approach for dust deposition monitoring of photovoltaic modules[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 718-726.
[7] Jia MENG,Jun-chao LI,Yun-min CHEN. Strain-hardening mechanism and applicability in hypergravity simulation of municipal solid waste[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 664-673.
[8] Yu TAO,Bo-rui ZHANG,Lei XU,Hong-lei TIAN,Ya-peng ZHANG,Qing-wen ZHANG. Simulation of snow accumulation on high-speed train bogies based on snow-wall bonding criteria validation[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 674-682.
[9] Ke-wen ZHANG,Bai-song PAN. Control design of spacecraft autonomous rendezvous using nonlinear models with uncertainty[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 833-842.
[10] Jun-heng XU,Xiao-jun YANG,Bing LI. Design of wing mechanism with variable camber based on cross-spring flexural pivots[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 444-451, 509.
[11] Guo-hui SHEN,Bao-heng LI,Yong GUO,Zheng ZHAO,Feng PAN. Calculation methods of torsion response and torsion equivalent static wind loading of transmission tower[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 579-589.
[12] Jing-hui CHU,Li-dong SHI,Pei-guang JING,Wei LV. Context-aware knowledge distillation network for object detection[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 503-509.
[13] Yong-chao WANG,Yu CAO,Yu-hui YANG,Duan-qing XU. Dialogue generation model based on knowledge transfer and two-direction asynchronous sequence[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 520-530.
[14] Meng-fan LIU,Gang-feng WU,Ke-feng ZHANG,Ping DONG. 2D non-cohesive earthen embankment breach model based on linear erosion formula[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 569-578.
[15] Shuai-ling GAO,Jun-qiang XIA,Bo-liang DONG,Mei-rong ZHOU,Jing-ming HOU. Mathematical model for urban flooding with effect of drainage of street inlets[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 590-597.