|
|
Digital twin mapping modeling and method of monitoring and simulation for reconfigurable manufacturing system |
Bo-han LENG1,2(),Tang-bin XIA1,2,*(),He SUN1,2,Hao WANG1,2,Li-feng XI1,2 |
1. State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2. Fraunhofer Project Center for Smart Manufacturing at Shanghai Jiao Tong University, Shanghai 201306, China |
|
|
Abstract Digital twin and manufacturing simulation integrated platform (DTMSIP) architecture for reconfigurable manufacturing system (RMS) was proposed, aiming at the application problem of digital twin on RMS. DTMSIP was highly adapted to RMS’s dynamic reconfiguration and can be used for simulation analysis in RMS configuration design. Digital twin mapping for RMS was modeled. By defining twinning entity (TE), heterogeneous multi-source data integration in RMS shop-floor was realized and digital twin mapping for machine tools and configuration was established. The application procedure of digital twin-based RMS reconfiguration was proposed. DTMSIP served the purpose of assisting RMS reconfiguration through iteration of cyber physical fusion and iteration of configuration simulation. In order to validate the proposed method, Unreal Engine 4 (UE4) was adopted to implement DTMSIP software for a modular RMS. Current configuration and four planned configurations were input to DTMSIP software for simulation. Quantitative and comprehensive analysis was performed on the configurations taking into consideration cost of reconfiguration, cycle time and line balance, contributing to accelerate RMS reconfiguration design processes.
|
Received: 20 October 2021
Published: 31 May 2022
|
|
Fund: 国家自然科学基金资助项目(51875359);上海市“科技创新行动计划”自然科学基金资助项目(20ZR1428600);上海商用飞机系统工程科创中心联合研究基金资助项目(FASE-2021-M7);教育部-中国移动联合基金建设项目(MCM20180703);上海交通大学深蓝计划基金资助项目(SL2021MS008);中船-交大海洋装备前瞻创新基金(22B010432) |
Corresponding Authors:
Tang-bin XIA
E-mail: lamberhand@gmail.com;xtbxtb@sjtu.edu.cn
|
面向可重构制造的数字孪生映射建模与监控仿真
针对数字孪生在可重构制造系统(RMS)的应用问题,提出面向RMS的数字孪生与制造仿真一体化平台(DTMSIP)架构. DTMSIP架构充分适配RMS动态重构特性,可以在RMS构型设计中实现仿真分析. 对面向RMS的数字孪生映射进行建模,通过引入孪生实体(TE),实现RMS车间的多源异构数据集成,并分别建立机床与构型的数字孪生映射. 建立数字孪生方法在RMS重构中的应用流程,通过信息物理融合迭代与构型仿真优化迭代,DTMSIP可以服务于RMS的系统重构. 为了验证所提出方法的可行性,使用虚幻引擎四(UE4)为一套实际的模块化RMS构建数字孪生平台,并将当前构型以及4种规划构型作为仿真输入. 通过分析重构成本、生产周期与系统平衡率3项指标,实现对构型的量化综合分析,实现了重构设计流程加速.
关键词:
数字孪生,
可重构制造系统,
映射建模,
实时仿真,
系统重构
|
|
[1] |
陶飞, 刘蔚然, 刘检华, 等 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24 (1): 1- 18 TAO Fei, LIU Wei-ran, LIU Jian-hua, et al Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24 (1): 1- 18
|
|
|
[2] |
陶剑, 戴永长, 魏冉 基于数字线索和数字孪生的生产生命周期研究[J]. 航空制造技术, 2017, 21: 26- 31 TAO Jian, DAI Yong-chang, WEI Ran Study on production lifecycle based on digital thread and digital twin[J]. Aeronautical Manufacturing Technology, 2017, 21: 26- 31
|
|
|
[3] |
LU Y, LIU C, WANG K, et al Digital twin-driven smart manufacturing: connotation, reference model, applications and research issues[J]. Robotics and Computer-integrated Manufacturing, 2020, 61: 101837
|
|
|
[4] |
郑守国, 张勇德, 谢文添, 等 基于数字孪生的飞机总装生产线建模[J]. 浙江大学学报: 工学版, 2021, 55 (5): 843- 854 ZHENG Shou-guo, ZHANG Yong-de, XIE Wen-tian, et al Aircraft final assembly line modeling based on digital twin[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (5): 843- 854
|
|
|
[5] |
丁凯, 张旭东, 周光辉, 等 基于数字孪生的多维多尺度智能制造空间及其建模方法[J]. 计算机集成制造系统, 2019, 25 (6): 1491- 1504 DING Kai, ZHANG Xu-dong, ZHOU Guang-hui, et al Digital twin-based multi-dimensional and multi-scale modeling of smart manufacturing spaces[J]. Computer Integrated Manufacturing Systems, 2019, 25 (6): 1491- 1504
|
|
|
[6] |
ZHANG C, XU W, LIU J, et al A reconfigurable modeling approach for digital twin-based manufacturing system[J]. Procedia CIRP, 2019, 83: 118- 125
|
|
|
[7] |
程浙武, 童水光, 童哲铭, 等 工业锅炉数字化设计与数字孪生综述[J]. 浙江大学学报: 工学版, 2021, 55 (8): 1518- 1528 CHENG Zhe-wu, TONG Shui-guang, TONG Zhe-ming, et al Review of digital design and digital twin of industrial boiler[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (8): 1518- 1528
|
|
|
[8] |
陶飞, 张萌, 程江峰, 等 数字孪生车间: 一种未来车间运行新模式[J]. 计算机集成制造系统, 2017, 23 (1): 1- 9 TAO Fei, ZHANG Meng, CHENG Jiang-feng, et al Digital twin workshop: a new paradigm for future workshop[J]. Computer Integrated Manufacturing Systems, 2017, 23 (1): 1- 9
|
|
|
[9] |
江海凡, 丁国富, 张剑 数字孪生车间演化机理及运行机制[J]. 中国机械工程, 2020, 31 (7): 824- 832 JIANG Hai-fan, DING Guo-fu, ZHANG Jian Evolution and operation mechanism of digital twin shopfloors[J]. China Mechanical Engineering, 2020, 31 (7): 824- 832
doi: 10.3969/j.issn.1004-132X.2020.07.008
|
|
|
[10] |
TAO F, QI Q, WANG L, et al Digital twins and cyber-physical systems toward smart manufacturing and industry 4.0: correlation and comparison[J]. Engineering, 2019, 5 (4): 653- 661
|
|
|
[11] |
YILDIZ E, MØLLER C, BILBERG A Virtual factory: digital twin based integrated factory simulations[J]. Procedia CIRP, 2020, 93: 216- 221
|
|
|
[12] |
LENG B, SUN H, SI G, et al Digital twin and manufacturing simulation integrated platform embedded in cyber-physical system[J]. Journal of Physics: Conference Series, 2021, 1983 (1): 012117
|
|
|
[13] |
KOREN Y, HEISEL U, JOVANE F, et al Reconfigurable manufacturing systems[J]. CIRP Annals, 1999, 48 (2): 527- 540
|
|
|
[14] |
KOREN Y, SHPITALNI M Design of reconfigurable manufacturing systems[J]. Journal of Manufacturing Systems, 2010, 29 (4): 130- 141
|
|
|
[15] |
YANG C, GAO J, SUN L A multi-objective genetic algorithm for mixed-model assembly line rebalancing[J]. Computers and Industrial Engineering, 2013, 65 (1): 109- 116
|
|
|
[16] |
BRYAN A, HU S J, KOREN Y Assembly system reconfiguration planning[J]. Journal of Manufacturing Science and Engineering, 2013, 135 (4): 041005
|
|
|
[17] |
王青, 温李庆, 李江雄, 等 基于Petri网的飞机总装配生产线建模及优化方法[J]. 浙江大学学报: 工学版, 2015, 49 (7): 1224- 1231 WANG Qing, WEN Li-qing, LI Jiang-xiong, et al Modeling and optimization for aircraft final assembly line based on Petri net[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (7): 1224- 1231
|
|
|
[18] |
MICHALOS G, FYSIKOPOULOS A, MAKRIS S, et al Multi criteria assembly line design and configuration: an automotive case study[J]. CIRP Journal of Manufacturing Science and Technology, 2015, 9: 69- 87
|
|
|
[19] |
ROSEN R, VON WICHERT G, LO G, et al About the importance of autonomy and digital twins for the future of manufacturing[J]. IFAC-Papers OnLine, 2015, 48 (3): 567- 572
|
|
|
[20] |
YELLES-CHAOUCHE A R, GUREVSKY E, BRAHIMI N, et al Reconfigurable manufacturing systems from an optimisation perspective: a focused review of literature[J]. International Journal of Production Research, 2021, 59 (21): 6400- 6418
|
|
|
[21] |
GANSTERER M, ALMEDER C, HARTL R F Simulation-based optimization methods for setting production planning parameters[J]. International Journal of Production Economics, 2014, 151: 206- 213
|
|
|
[22] |
GOLA A Reliability analysis of reconfigurable manufacturing system structures using computer simulation methods[J]. Eksploatacja I Niezawodność, 2019, 21 (1): 90- 102
|
|
|
[23] |
PETROODI S, EYNAUD A, KLEMENT N, et al Simulation-based optimization approach with scenario-based product sequence in a reconfigurable manufacturing system (RMS): a case study[J]. IFAC-PapersOnLine, 2019, 52 (13): 2638- 2643
|
|
|
[24] |
CENTOBELLI P, CERCHIONE R, MURINO T Layout and material flow optimization in digital factory[J]. International Journal of Simulation Modelling, 2016, 15 (2): 223- 235
|
|
|
[25] |
ZHANG H, LIU Q, CHEN X, et al A digital twin-based approach for designing and multi-objective optimization of hollow glass production line[J]. IEEE Access, 2017, 5: 26901- 26911
|
|
|
[26] |
CAI Y, WANG Y, BURNETT M Using augmented reality to build digital twin for reconfigurable additive manufacturing system[J]. Journal of Manufacturing Systems, 2020, 56: 598- 604
|
|
|
[27] |
LENG J, LIU Q, YE S, et al Digital twin-driven rapid reconfiguration of the automated manufacturing system via an open architecture model[J]. Robotics and Computer-integrated Manufacturing, 2020, 63: 101895
|
|
|
[28] |
BAHETI R, GILL H Cyber-physical systems[J]. The Impact of Control Technology, 2011, 12 (1): 161- 166
|
|
|
[29] |
WEYER S, MEYER T, OHMER M, et al Future modeling and simulation of CPS-based factories: an example from the automotive industry[J]. IFAC-PapersOnLine, 2016, 49 (31): 97- 102
|
|
|
[30] |
XIA T, XI L, PAN E, et al Reconfiguration-oriented opportunistic maintenance policy for reconfigurable manufacturing systems[J]. Reliability Engineering and System Safety, 2017, 166: 87- 98
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|