Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (8): 1518-1528    DOI: 10.3785/j.issn.1008-973X.2021.08.013
    
Review of digital design and digital twin of industrial boiler
Zhe-wu CHENG1,2(),Shui-guang TONG2,Zhe-ming TONG2,*(),Qin-guo ZHANG1,2
1. Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
2. School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(915KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The characteristics of industrial boiler design and the necessity of introducing digital twin technology were summarized. The development and research status of digital design technology for industrial boilers were comprehensively summarized, and it was proposed that the digital design technology of a new generation of industrial boilers, with the design process optimization as the core and the digital twin as the foundation, was the key to improve the design capability and comprehensive performance of industrial boilers. The application characteristics of digital twin technology in industrial boiler design were analyzed, and three key technical problems of digital twin driven industrial boiler design were summarized: digital twin modeling technology for the expression of multiple information in the design process of industrial boiler; design process optimization technology based on human-computer interaction and virtual reality intelligent verification; industrial boiler digital twin data management technology for the full life cycle. On this basis, a digital twin driven digital design technology framework for industrial boilers was proposed, which was expected to provide ideas and valuable references for the research and application of digital design technology for high-performance industrial boilers.



Key wordsindustrial boilers      digital design      digital twins      design process optimization      full lifecycle management     
Received: 29 July 2020      Published: 01 September 2021
CLC:  TH 122  
Fund:  国家自然科学基金资助项目(51708493,51821093);浙江省自然科学基金资助项目(LR19E050002)
Corresponding Authors: Zhe-ming TONG     E-mail: chengzw@zju.edu.cn;tzm@zju.edu.cn
Cite this article:

Zhe-wu CHENG,Shui-guang TONG,Zhe-ming TONG,Qin-guo ZHANG. Review of digital design and digital twin of industrial boiler. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1518-1528.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.08.013     OR     https://www.zjujournals.com/eng/Y2021/V55/I8/1518


工业锅炉数字化设计与数字孪生综述

概述工业锅炉设计的特点和引入数字孪生技术的必要性. 通过对工业锅炉数字化设计技术的发展和研究现状的综述,提出以设计过程优化为核心、以数字孪生为基础的新一代工业锅炉数字化设计技术是提升工业锅炉设计能力和综合性能的关键. 分析数字孪生技术在工业锅炉设计中的应用特点,总结数字孪生驱动的工业锅炉数字化设计的三大关键技术问题:面向设计过程多元信息表达的工业锅炉数字孪生建模技术;基于人机交互与虚拟现实智能验证的设计过程优化技术;面向全生命周期的工业锅炉数字孪生数据管理技术. 在此基础上,提出数字孪生驱动的工业锅炉数字化设计技术框架,以期为面向高性能工业锅炉的数字化设计技术研究和应用提供思路和有价值的参考.


关键词: 工业锅炉,  数字化设计,  数字孪生,  设计过程优化,  全生命周期管理 
Fig.1 Typical industrial boiler system diagram
Fig.2 Analysis and calculation of industrial boiler design process
Fig.3 Application characteristics of digital twin technology in industrial boiler design
Fig.4 Digital twin driven industrial boiler design optimization technology framework
Fig.5 Full life cycle management of digital twin driven industrial boiler
[1]   樊泉桂. 锅炉原理[M]. 第2版. 北京: 中国电力出版社, 2014.
[2]   钟崴, 童水光 锅炉智能CAD的技术和方法研究[J]. 浙江大学学报: 工学版, 2006, 40 (4): 572- 576
ZHONG Wei, TONG Shui-guang Research on technologies and methods of intelligent boiler CAD[J]. Journal of Zhejiang University: Engineering Science, 2006, 40 (4): 572- 576
doi: 10.3785/j.issn.1008-973X.2006.04.006
[3]   郑树, 周怀春 三维、动态、实时数字化锅炉技术发展探讨[J]. 中国科学: 技术科学, 2016, 46 (1): 20- 35
ZHENG Shu, ZHOU Huai-chun Discussion on the development of a 3D, dynamic and real-time digital boiler[J]. Scientia Sinica: Technologica, 2016, 46 (1): 20- 35
doi: 10.1360/N092015-00238
[4]   GRIEVES M Product lifecycle management: the new paradigm for enterprises[J]. International Journal of Product Development, 2005, 2 (1/2): 71- 84
doi: 10.1504/IJPD.2005.006669
[5]   TAO F, QI Q New IT driven service-oriented smart manufacturing: framework and characteristics[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 49 (1): 81- 91
[6]   陶飞, 戚庆林 面向服务的智能制造[J]. 机械工程学报, 2018, 54 (16): 11- 23
TAO Fei, QI Qing-lin Service-oriented smart manufacturing[J]. Journal of Mechanical Engineering, 2018, 54 (16): 11- 23
doi: 10.3901/JME.2018.16.011
[7]   李浩, 陶飞, 王昊琪, 等 基于数字孪生的复杂产品设计制造一体化开发框架与关键技术[J]. 计算机集成制造系统, 2019, 25 (6): 1320- 1336
LI Hao, TAO Fei, WANG Hao-qi, et al Integration framework and key technologies of complex product design-manufacturing based on digital twin[J]. Computer Integrated Manufacturing Systems, 2019, 25 (6): 1320- 1336
[8]   LEE J, AZAMFAR M, SINGH J, et al Integration of digital twin and deep learning in cyber-physical systems: towards smart manufacturing[J]. IET Collaborative Intelligent Manufacturing, 2020, 2: 34- 36
doi: 10.1049/iet-cim.2020.0009
[9]   SCHUHBAUER C, ANGERER M, SPLIETHOFF H, et al Coupled simulation of a tangentially hard coal fired 700 ℃ boiler[J]. Fuel, 2014, 122: 149- 163
doi: 10.1016/j.fuel.2014.01.032
[10]   BELYAKOV I I, BREUS V I, POPOV M S Analysis of the hydraulic regimes of vertical waste-heat boilers of combined-cycle gas-turbine units[J]. Power Technology and Engineering, 2019, 53 (4): 466- 472
doi: 10.1007/s10749-019-01100-1
[11]   MADEJSKI P, YMEŁKA P Calculation methods of steam boiler operation factors under varying operating conditions with the use of computational thermodynamic modeling[J]. Energy, 2020, 197: 117221
doi: 10.1016/j.energy.2020.117221
[12]   陈晓霞. 基于I-DEAS的锅炉钢架有限元分析系统[D]. 杭州: 浙江大学, 2007.
CHEN Xiao-xia. A system of boiler steel frame with fem by I-DEAS[D]. Hangzhou: Zhejiang University, 2007.
[13]   仝营, 钟崴, 吴燕玲, 等 基于流体网络方法的超临界电站锅炉性能分析平台[J]. 中国电机工程学报, 2014, 34 (5): 748- 755
TONG Ying, ZHONG Wei, WU Yan-ling, et al Performance analysis platform of supercritical power station boilers based on the fluid network method[J]. Proceedings of the CSEE, 2014, 34 (5): 748- 755
[14]   万丛, 王恩禄, 徐煦, 等 锅炉热力计算中烟气导热系数的数字化计算方法研究[J]. 锅炉技术, 2016, 47 (2): 1- 4
WAN Cong, WANG En-lu, XU xu, et al The digital calculation of the flue gas thermal conductivity for boiler thermodynamic calculation[J]. Boiler Technology, 2016, 47 (2): 1- 4
doi: 10.3969/j.issn.1672-4763.2016.02.001
[15]   TANG G, ZHANG M, Gu J, et al Thermal-hydraulic calculation and analysis on evaporator system of a 660 MW supercritical CFB boiler[J]. Applied Thermal Engineering, 2019, 151: 385- 393
doi: 10.1016/j.applthermaleng.2019.01.060
[16]   董乐, 辛亚飞, 李娟, 等 660 MW超超临界循环流化床锅炉水动力及流动不稳定特性计算分析[J]. 中国电机工程学报, 2020, 40 (5): 1545- 1554
DONG Le, XIN Ya-fei, LI Juan, et al Computational analysis on thermal-hydraulic characteristics and flow instability of a 660 MW ultra-supercritical circulating fluidized bed boiler[J]. Proceedings of the CSEE, 2020, 40 (5): 1545- 1554
[17]   闫广远. 基于NX锅炉三维设计系统主框架的开发[D]. 济南: 山东大学, 2019.
YAN Guang-yuan. Development of main frame of boiler 3D design system based on NX[D]. Jinan: Shandong University, 2019.
[18]   王擎, 秦裕琨, 刘辉, 等 循环流化床锅炉热力计算通用程序编制[J]. 热力发电, 2000, (6): 9- 11
WANG Qing, QIN Yu-kun, LIU Hui, et al General program for thermal calculation of circulating fluidized bed boiler[J]. Thermal Power Generation, 2000, (6): 9- 11
doi: 10.3969/j.issn.1002-3364.2000.06.003
[19]   陈有福. 电站燃煤锅炉热力计算通用性的实现与研究[D]. 南京: 东南大学, 2004.
CHEN You-fu. Research and realization of universal power plant coal-fired boiler thermodynamic calculation[D]. Nanjing: Dongnan University, 2004.
[20]   黄中, 杨娟, 车得福 大容量循环流化床锅炉技术发展应用现状[J]. 热力发电, 2019, 48 (6): 1- 8
HUANG Zhong, YANG Juan, CHE De-fu Application and development status of large-scale CFB boilers[J]. Thermal Power Generation, 2019, 48 (6): 1- 8
[21]   谢金芳. 基于管网计算理论的通用锅炉水动力计算系统的研究与应用[D]. 杭州: 浙江大学, 2011.
XIE Jin-fang. Reasearch and application of general-purpose software for boiler hydrodynamic calculation based on the theory of pipe network calculation[D]. Hangzhou: Zhejiang University, 2011.
[22]   张钧泰. 锅炉排烟余热利用计算及在线优化软件设计[D]. 天津: 天津大学, 2016.
ZHANG Jun-tai. Calculation and on-line optimization software design of waste heat utilization of boiler exhaust smoke[D]. Tianjin: Tianjin University, 2016.
[23]   郭森 基于VB的常规超临界π型锅炉热力计算程序的研究[J]. 锅炉制造, 2020, (2): 19- 21
GUO sen Research of thermal calculation software for super-critical π-boiler based on visual basic[J]. Boiler Manufacturing, 2020, (2): 19- 21
[24]   MITRA S, BASU P, GHOSHAL T K Classification and representation of design knowledge for circulating fluidized bed boiler[J]. Engineering Applications of Artificial Intelligence, 1993, 6: 457- 464
doi: 10.1016/0952-1976(93)90006-J
[25]   LU S Towards intelligent systems for boiler design[J]. Proceeding of the Institution of Mechanical Engineers, Part A, 1997, 211 (A5): 399- 410
[26]   钟崴. 锅炉智能CAD的技术、方法和模型研究[D]. 杭州: 浙江大学, 2002.
ZHONG Wei. Research on the technologies, methods and models of boiler intelligent CAD[D]. Hangzhou: Zhejiang University, 2002.
[27]   周鸿波. 基于知识的循环流化床锅炉方案设计技术[D]. 杭州: 浙江大学, 2008.
ZHOU Hong-bo. Research on knowledge-based scheme design technologies of circulating fluidized bed boiler[D]. Hangzhou: Zhejiang University, 2008.
[28]   YU Y X, LIAO H K, ZHOU Y, et al Reasoning and fuzzy comprehensive assessment methods based CAD system for boiler intelligent design[J]. Journal of Mechanical Science and Technology, 2015, 29 (3): 1123- 1130
doi: 10.1007/s12206-015-0224-9
[29]   鲁刚, 朱文华, 黄夫理 省煤器智能设计系统的开发及其关键技术[J]. 现代制造工程, 2013, (2): 68- 72
LU Gang, ZHU Wen-hua, HUANG Fu-li The development and key techniques of economizer intelligent design system[J]. Modern Manufacturing Engineering, 2013, (2): 68- 72
doi: 10.3969/j.issn.1671-3133.2013.02.017
[30]   夏仁康, 仲梁维, 洪亮 基于知识工程的余热锅炉智能设计系统研究[J]. 机械工程与自动化, 2015, (1): 34- 36
XIA Ren-kang, ZHONG Liang-wei, HONG Liang Heat recovery steam generator intelligence design system based on knowledge engineering[J]. Mechanical Engineering and Automation, 2015, (1): 34- 36
doi: 10.3969/j.issn.1672-6413.2015.01.014
[31]   黄政, 陈彩凤, 仲梁维 基于CBR的余热锅炉模块化设计研究[J]. 通信电源技术, 2016, 33 (2): 84- 86
HUANG Zheng, CHEN Cai-feng, ZHONG Liang-wei Research on modular design of heat recovery steam generator based on CBR[J]. Telecom Power Technology, 2016, 33 (2): 84- 86
[32]   孙双成. 基于群体智能优化理论的辐射换热腔体几何反设计[D]. 哈尔滨: 哈尔滨工业大学, 2015.
SUN Shuang-cheng. Inverse geometry design of radiative enclosures using swarm intelligence optimization algorithms[D]. Harbin: Harbin Institute of Technology, 2015.
[33]   程慧慧, 何玉安, 何亚飞 基于知识库的超临界锅炉空间管路快速设计研究[J]. 上海第二工业大学学报, 2017, 34 (4): 270- 276
CHENG hui-hui, HE Yu-an, HE Ya-fei Knowledge based fast design research for space complex pipelines used in supercritical boiler[J]. Journal of Shanghai Polytechnic University, 2017, 34 (4): 270- 276
[34]   樊泉桂, 阎书耕 超临界“W”火焰锅炉水冷壁的优化设计[J]. 中国电力, 2010, 43 (8): 13- 17
FAN Quan-gui, YAN Shu-geng Optimized design of water wall in supercritical boiler with W-shaped flame[J]. Electric Power, 2010, 43 (8): 13- 17
doi: 10.3969/j.issn.1004-9649.2010.08.004
[35]   钟崴, 吴燕玲, 童水光, 等 基于遗传算法的锅炉对流受热面优化设计[J]. 浙江大学学报: 工学版, 2010, 44 (12): 2291- 2296
ZHONG Wei, WU Yan-ling, TONG Shui-guang, et al Optimal design of convection heating surface of boiler based on genetic algorithm[J]. Journal of Zhejiang University: Engineering Science, 2010, 44 (12): 2291- 2296
doi: 10.3785/j.issn.1008-973X.2010.12.010
[36]   王永堂, 陈明, 王艳滨, 等 燃气轮机余热锅炉过渡烟道的优化设计[J]. 热能动力工程, 2010, 25 (1): 65- 68
WANG Yong-tang, CHEN Ming, WANG Yan-bin, et al Optimized design of the transition flue duct of a gas turbine-based waste heat recovery boiler[J]. Journal of Engineering for Thermal Energy and Power, 2010, 25 (1): 65- 68
[37]   马凯, 阎维平, 高正阳, 等 增压富氧燃煤锅炉省煤器的设计与优化[J]. 动力工程学报, 2013, 33 (3): 165- 171
MA Kai, YAN Wei-ping, GAO Zheng-yang, et al Design and optimization for economizer of pressurized oxy-fuel coal-fired boilers[J]. Journal of Chinese Society of Power Engineering, 2013, 33 (3): 165- 171
doi: 10.3969/j.issn.1674-7607.2013.03.001
[38]   赵晴川, 郝军, 李洪泉, 等 数值模拟在电站锅炉烟风道优化设计中的应用[J]. 锅炉技术, 2014, 45 (6): 12- 16
ZHAO Qing-chuan, HAO Jun, LI Hong-quan, et al Numerical simulation of flow field for wind-box and selective catalytic reduction system in utility boiler[J]. Boiler Technology, 2014, 45 (6): 12- 16
doi: 10.3969/j.issn.1672-4763.2014.06.003
[39]   李皓宇 基于熵产分析的锅炉对流传热受热面优化分析设计[J]. 华北电力技术, 2017, (5): 44- 48
LI Hao-yu Research on geometrical optimization design of boiler's convective heating surface using entropy generation[J]. North China Electric Power, 2017, (5): 44- 48
[40]   GULOTTA T M, GUARINO F, CELLURA M, et al A constructal law optimization of a boiler inspired by life cycle thinking[J]. Thermal Science and Engineering Progress, 2018, 6: 380- 387
doi: 10.1016/j.tsep.2018.01.008
[41]   YUSHKOVA E A, LEBEDEV V A, YAKOVLEV P V Optimization of the boiler using the pinch method and exergy method[J]. IOP Conference Series: Earth and Environmental Science, 2019, 378: 12052
doi: 10.1088/1755-1315/378/1/012052
[42]   范海东 基于数字孪生的智能电厂体系架构及系统部署研究[J]. 智能科学与技术学报, 2019, 1 (3): 241- 248
FAN Hai-dong Research on architecture and system deployment of intelligent power plant based on digital twin[J]. Chinese Journal of Intelligent Science and Technology, 2019, 1 (3): 241- 248
[43]   郭飞燕, 刘检华, 邹方, 等 数字孪生驱动的装配工艺设计现状及关键实现技术研究[J]. 机械工程学报, 2019, 55 (17): 110- 132
GUO Fei-yan, LIU Jian-hua, ZOU Fang, et al Research on the state-of-art, connotation and key implementation technology of assembly process planning with digital twin[J]. Journal of Mechanical Engineering, 2019, 55 (17): 110- 132
doi: 10.3901/JME.2019.17.110
[44]   王安邦, 孙文彬, 段国林 基于数字孪生与深度学习技术的制造加工设备智能化方法研究[J]. 工程设计学报, 2019, 26 (6): 666- 674
WANG An-bang, SUN Wen-bin, DUAN Guo-lin Research on intelligent method of manufacturing and processing equipment based on digital twin and deep learning technology[J]. Chinese Journal of Engineering Design, 2019, 26 (6): 666- 674
doi: 10.3785/j.issn.1006-754X.2019.00.009
[45]   刘蔚然, 陶飞, 程江峰, 等 数字孪生卫星: 概念、关键技术及应用[J]. 计算机集成制造系统, 2020, 26 (3): 565- 588
LIU Wei-ran, TAO Fei, CHENG Jiang-feng, et al Digital twin satellite: concept, key technologies and applications[J]. Computer Integrated Manufacturing Systems, 2020, 26 (3): 565- 588
[46]   王春晓. 基于数字孪生的中科院SAMP平台运维分析系统设计与实现[D]. 沈阳: 中国科学院大学, 2019.
WANG Chun-xiao. Design and implementation of SAMP platform operation and maintenance analysis system of CAS based on digital twin[D]. Shenyang: University of Chinese Academy of Sciences, 2019.
[47]   李凯, 钱浩, 龚梦瑶, 等 基于数字孪生技术的数字化舰船及其应用探索[J]. 船舶, 2018, 29 (6): 101- 108
LI Kai, QIAN Hao, GONG Meng-yao, et al Digital warship and its application exploration based on digital twin technology[J]. Ship & Boat, 2018, 29 (6): 101- 108
[48]   TAO F, ZHANG M, LIU Y S, et al Digital twin driven prognostics and health management for complex equipment[J]. CIRP Annals-Manufacturing Technology, 2018, 67 (1): 169- 172
doi: 10.1016/j.cirp.2018.04.055
[49]   BENJAMIN S, NABIL A, LUC M, et al Shaping the digital twin for design and production engineering[J]. CIRP Annals-Manufacturing Technology, 2017, 66 (1): 141- 144
doi: 10.1016/j.cirp.2017.04.040
[50]   于勇, 范胜廷, 彭关伟, 等 数字孪生模型在产品构型管理中应用探讨[J]. 航空制造技术, 2017, (7): 41- 45
YU Yong, FAN Sheng-ting, PENG Guan-wei, et al Study on application of digital twin model in product configuration management[J]. Aeronautical Manufacturing Technology, 2017, (7): 41- 45
[51]   周有城, 武春龙, 孙建广, 等 面向智能产品的数字孪生体功能模型构建方法[J]. 计算机集成制造系统, 2019, 25 (6): 1392- 1404
ZHOU You-cheng, WU Chun-long, SUN Jian-guang, et al Function model construction method based on digital twin for intelligent products[J]. Computer Integrated Manufacturing Systems, 2019, 25 (6): 1392- 1404
[52]   张鹏, 冯浩, 杨通达, 等 数字孪生与TRIZ集成迭代参数演化创新设计过程模型[J]. 计算机集成制造系统, 2019, 25 (6): 1361- 1370
ZHANG Peng, FENG Hao, YANG Tong-da, et al Innovative design process model of TRIZ and digital twin integration iterative evolution based on parameter deduction[J]. Computer Integrated Manufacturing Systems, 2019, 25 (6): 1361- 1370
[53]   李琳利, 李浩, 顾复, 等 基于数字孪生的复杂机械产品多学科协同设计建模技术[J]. 计算机集成制造系统, 2019, 25 (6): 1307- 1319
LI Ling-li, LI Hao, GU Fu, et al Multidisciplinary collaborative design modeling technologies for complex mechanical products based on digital twin[J]. Computer Integrated Manufacturing Systems, 2019, 25 (6): 1307- 1319
[54]   肖飞, 张为华, 王东辉, 等 数字孪生驱动的固体发动机总体设计体系架构与应用[J]. 计算机集成制造系统, 2019, 25 (6): 1405- 1418
XIAO Fei, ZHANG Wei-hua, WANG Dong-hui, et al System architecture and applications for overall design of solid rocket motor based on digital twin[J]. Computer Integrated Manufacturing Systems, 2019, 25 (6): 1405- 1418
[55]   HAVARD V, JEANNE B, LACOMBLEZ M, et al Digital twin and virtual reality: a co-simulation environment for design and assessment of industrial workstations[J]. Production & Manufacturing Research, 2019, 7 (1): 472- 489
[56]   陶飞, 刘蔚然, 张萌, 等 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25 (1): 1- 18
TAO Fei, LIU Wei-ran, ZHANG Meng, et al Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems, 2019, 25 (1): 1- 18
[57]   颜龙晚 锅炉的数字化交付初探[J]. 锅炉技术, 2019, 50 (1): 70- 75
YAN Wan-long Discussion on digitization of boiler and digital transfer platform[J]. Boiler Technology, 2019, 50 (1): 70- 75
doi: 10.3969/j.issn.1672-4763.2019.01.013
[58]   庄存波, 刘检华, 熊辉, 等 产品数字孪生体的内涵、体系结构及其发展趋势[J]. 计算机集成制造系统, 2017, 23 (4): 753- 768
ZHUANG Cun-bo, LIU Jian-hua, XIONG Hui, et al Connotation, architecture and trends of product digital twin[J]. Computer Integrated Manufacturing Systems, 2017, 23 (4): 753- 768
[59]   陶飞, 刘蔚然, 刘检华, 等 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24 (1): 1- 18
TAO Fei, LIU Wei-ran, LIU Jian-hua, et al Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24 (1): 1- 18
[1] Zhen LV,Xin-jie WANG,Ya-feng LIU,Yong-quan ZHAO. Driving performance of photovoltaic-electrostatic hybrid actuator[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 178-185.
[2] Miao LIN,Yong-jian JU,Gang MENG,Kun WANG,Yi CAO. Design and optimization of large range 2-DOF micro-positioning clamping system[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1234-1244.
[3] Jun-xia JIANG,Xin-yuan ZHANG,Bang-ming TAO,Qun DONG. Design and experiment of remote handling motor replacement device based on passive compliant mechanism[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 855-865.
[4] Tian-ze HAO,Hua-ping XIAO,Shu-hai LIU,Chao ZHANG,Hao MA. Research status of integrated intelligent soft robots[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 229-243.
[5] Da-peng BAI,Bin ZHANG,Hao-cen HONG,Yang LI,Qing-hua JI,Hua-yong YANG. Biological 3D printer and topography detection of printing model[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 289-298.
[6] Lei GUO,Xiu-fen ZHANG. Remanufacturing parallel disassembly sequence planning method driven by multiple failures[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2233-2246.
[7] Sarina,Shu-you ZHANG,Le-miao QIU,Li-chun ZHANG. Schematic design of mechanism system based on transmission affordance evaluation[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2179-2189.
[8] Yun-kai GAO,Chao MA,Zhe LIU,Ya-nan XU. Stress-based topology optimization based on global measure of distort energy density[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2169-2178.
[9] Kai-yuan SU,Zhi-gang XU,Jian-feng ZHU,Wei-min LIU. Dismantling equipment design for scrap product based on Petri net[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1795-1804.
[10] Hao CHEN,Xin-jie WANG,Jiong WANG,Zhan-wen XI,Yun CAO. Optimization and design of micro-electro-thermal actuator based on Kriging model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1490-1496.
[11] Yun-qing HU,Qing-ying QIU,Xiu YU,Jian-wei WU. Semi-supervised patent text classification method based on improved Tri-training algorithm[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 331-339.
[12] Peng ZHANG,Xiao-jian LIU,Shu-you ZHANG,Le-miao QIU,Guo-dong YI. Sparse hybrid uncertain variable optimization method and application[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 435-443.
[13] LI Te,Rui Zhi yuan,LEI Chun li,GUO Jun feng,HU Chi bing. Simulation of thermal characteristics of high speed spindle considering air gap variation[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 941-948.
[14] JI Yu,QIU Qing ying,FENG Pei en,HUANG Hao. Extraction and utilization of design knowledge in international patent classification[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 412-418.
[15] LV Mao yin, XU Yue tong, YE Guo yun,YAO Xin hua. Optimal design of asymmetric steering mechanism based on quantum behaved particle swarm optimization algorithm[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 218-223.