Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (1): 178-185    DOI: 10.3785/j.issn.1008-973X.2022.01.020
    
Driving performance of photovoltaic-electrostatic hybrid actuator
Zhen LV(),Xin-jie WANG*(),Ya-feng LIU,Yong-quan ZHAO
School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Download: HTML     PDF(1235KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A novel photovoltaic-electrostatic hybrid actuator with a slant lower electrode was proposed based on the photovoltaic effect of lead lanthanum zirconate titanate (PLZT), and the driving performance was analyzed through the closed-loop control simulation. The mathematical model of photovoltaic-electrostatic hybrid actuator during the illumination and non-illumination phase was established, and the parameters of the mathematical model were identified. Then the closed-loop control model of the output displacement of photovoltaic-electrostatic hybrid actuator was constructed, and the displacement closed-loop control simulation analysis of actuator with different slant angles under different light intensities was conducted. Results showed that the response time of the output displacement for photovoltaic-electrostatic hybrid actuator with a slant lower electrode was about 45% of that of the parallel lower electrode in condition of the same target displacement and light intensity. The response time of the output displacement for photovoltaic-electrostatic hybrid actuator was positively correlated with the light intensity and the slant angle of the lower electrode, while the control accuracy of the output displacement was inversely correlated with the light intensity and the slant angle of the lower electrode.



Key wordsPLZT ceramic      photovoltaic-electrostatic      closed-loop control      slant lower electrode      actuator     
Received: 05 March 2021      Published: 05 January 2022
CLC:  TH 122  
Fund:  国家自然科学基金资助项目(52075263,51675282).
Corresponding Authors: Xin-jie WANG     E-mail: 1157069303@qq.com;xjwang@njust.edu.cn
Cite this article:

Zhen LV,Xin-jie WANG,Ya-feng LIU,Yong-quan ZHAO. Driving performance of photovoltaic-electrostatic hybrid actuator. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 178-185.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.01.020     OR     https://www.zjujournals.com/eng/Y2022/V56/I1/178


光电-静电复合驱动器的驱动性能

基于镧改性锆钛酸铅陶瓷(PLZT)的光电效应,提出具有倾斜下电极的新型光电-静电复合驱动器,通过闭环控制仿真研究该驱动器的驱动性能. 构建光照和光停阶段光电-静电复合驱动器的数学模型,对所构建的光生电压数学模型进行参数识别. 建立光电-静电复合驱动器输出位移的闭环控制模型,对不同辐射照度下具有不同倾斜角下电极的驱动器进行位移闭环控制仿真分析. 结果表明,当目标位移和辐射照度一致时,具有倾斜下电极结构的光电-静电复合驱动器输出位移的响应时间约为平行下电极结构的45%. 光电-静电复合驱动器输出位移的响应时间与辐射照度和下电极倾斜角成正相关变化,输出位移的控制精度与辐射照度和下电极倾斜角成反相关变化.


关键词: PLZT陶瓷,  光电-静电,  闭环控制,  倾斜下电极,  驱动器 
Fig.1 Schematic diagram of photovoltaic electrostatic hybrid actuator with slant lower electrode
参数 数值
扭臂宽度 w1/μm 10
扭臂厚度b/μm 10
上电极长度l/μm 1600
上电极宽度w/μm 900
上下电极最大间距h/μm 50
扭臂长度l1/μm 800
下电极倾斜角θ0/(°) 1.7
Tab.1 Structure parameters of photovoltaic electrostatic hybrid actuator
Fig.2 Coupling relationship of opto-electric-thermo-mechanic fields of PLZT ceramic
Fig.3 Closed-loop control model of photovoltaic electrostatic hybrid actuator
Fig.4 Time history of photovoltage of PLZT under irradiation of different light intensities
Fig.5 Experimental and fitting curves of photovoltage of PLZT ceramic under irradiation of different light intensities
Fig.6 Flow chart of closed-loop control of output displacement for photovoltaic electrostatic hybrid actuator
Fig.7 Relation between displacement of upper electrode tip and torque under different driving voltages
Fig.8 Closed-loop displacement control of actuator illuminated by light intensity of 20 mW/cm2
Fig.9 Closed-loop displacement control of actuator illuminated by light intensity of 40 mW/cm2
Fig.10 Closed-loop displacement control of actuator illuminated by light intensity of 60 mW/cm2
E/(mW·cm?2) θ0/(°) ts/ms h/μm f/μm
20 0 295 0.5 0.9
20 1.7 135 1.0 2.2
40 0 185 0.7 1.4
40 1.7 80 1.5 3.0
60 0 135 0.9 1.8
60 1.7 65 2.3 4.7
Tab.2 Driving performance of actuator illuminated by different light intensity
[1]   SHIH H, TZOU H Photostrictive actuators for photonic control of shallow spherical shells[J]. Smart Materials and Structures, 2007, 16 (5): 1712- 1717
doi: 10.1088/0964-1726/16/5/025
[2]   SUN D, TONG L Theoretical investigation on wireless vibration control of thin beams using photostrictive actuators[J]. Journal of Sound and Vibration, 2008, 312 (1/2): 182- 194
[3]   RAHMAN M, NAWAZ M. Finite element modeling analysis of photostrictively driven optical actuators for excitation of microdevices [EB/OL]. (2011-10-11). https://iopscience.iop.org/article/10.1088/0964-1726/20/11/115013.
[4]   WANG X J, YUE H H, JIANG J, et al Wireless active vibration control of thin cylindrical shells laminated with photostrictive actuators[J]. Journal of Intelligent Material Systems and Structures, 2011, 22 (4): 337- 351
doi: 10.1177/1045389X11400344
[5]   姜晶, 岳洪浩, 邓宗全, 等 基于0-3方向极化的PLZT作动器开口圆柱壳主动振动控制[J]. 振动与冲击, 2013, (11): 106- 111
JIANG Jing, YUE Hong-hao, DENG Zong-quan, et al Active vibration control of an open cylindrical shell based on a 0-3 polarized PLZT photostrictive actuator[J]. Journal of Vibration and Shock, 2013, (11): 106- 111
doi: 10.3969/j.issn.1000-3835.2013.11.022
[6]   HE R B, ZHENG S J, TONG L Y. Multimodal vibration control of photo-electric laminated thin cylindrical shells via self-organizing fuzzy sliding mode control [EB/OL]. (2016-05-18). https://asmedigitalcollection.asme.org/vibrationacoustics/article/138/4/041003/472697/Multimodal-Vibration-Control-of-Photo-Electric?searchresult=1.
[7]   黄家瀚, 王新杰, 王炅 基于光致形变材料的光驱动微夹钳[J]. 上海交通大学学报, 2014, 48 (12): 1681- 1687
HUANG Jia-han, WANG Xin-jie, WANG Jiong An optically driven microgripper based on photostrictive materials[J]. Journal of Shanghai Jiao Tong University, 2014, 48 (12): 1681- 1687
[8]   LU F, WANG X J, HUANG J H, et al. Theoretical and experimental analysis of an optical driven servo system [EB/OL]. (2016-08-24). https://iopscience.iop.org/article/10.1088/0964-1726/25/9/095054.
[9]   HUANG J H, WANG X J, WANG J. A mathematical model for predicting photo-induced voltage and photostriction of PLZT with coupled multi-physics fields and its application [EB/OL]. (2015-12-22). https://iopscience.iop.org/article/10.1088/0964-1726/25/2/025002.
[10]   姜晶, 李晓楠, 岳洪浩, 等 光控压电混合驱动特性及影响因素分析[J]. 机械工程学报, 2017, 53 (1): 65- 71
JIANG Jing, LI Xiao-nan, YUE Hong-hao, et al Driving characteristics and influencing factors of light controlled piezoelectric hybrid actuator[J]. Chinese Journal of Mechanical Engineering, 2017, 53 (1): 65- 71
doi: 10.3901/JME.2017.01.065
[11]   乔锟, 王新杰 PLZT/PVDF层合柔性悬臂梁的驱动特性[J]. 浙江大学学报:工学版, 2018, 52 (10): 43- 48
QIAO Kun, WANG Xin-jie Driving characteristics of PLZT/PVDF laminated flexible cantilever[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (10): 43- 48
[12]   LIU Y F, WANG X J, WANG J, et al. Investigation on influence factors of opto-electrostatic hybrid driving torsion actuator based on PLZT ceramic [EB/OL]. (2020-09-26). https://www.sciencedirect.com/science/article/pii/S0921510720303056.
[13]   LIU Y F, WANG X J, WANG J, et al The experimental analysis on the driving characteristics of photo response torsion actuator[J]. Journal of Intelligent Material Systems and Structures, 2020, 31 (12): 1455- 1464
doi: 10.1177/1045389X20923092
[14]   黄家瀚, 王新杰, 王炅 PLZT陶瓷在多能场耦合下的光致伸缩效应[J]. 光学 精密工程, 2015, 23 (3): 760- 768
HUANG Jia-han, WANG Xin-jie, WANG Jiong Photostrictive effect of PLZT ceramic at coupling of multiple energy fields[J]. Optics and Precision Engineering, 2015, 23 (3): 760- 768
doi: 10.3788/OPE.20152303.0760
[15]   HUANG J H, WANG X J, WANG J. A study on residual photovoltage and photo-induced strain in plzt ceramic with coupled multi-physics fields [C]// Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition. Houston: ASME, 2016.
[1] Wei LI,Jian-jun ZHANG. Integrated security control method for industrial cyber-physical system with attack and fault[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1185-1198.
[2] Hao CHEN,Xin-jie WANG,Jiong WANG,Zhan-wen XI,Yun CAO. Optimization and design of micro-electro-thermal actuator based on Kriging model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1490-1496.
[3] YUAN Ren-yu, LUO Kun, WANG Jian-wen, JI Wen-ju, ZHANG Li-ru, WANG Qiang, FAN Jian-ren. Numerical simulation of wind turbine operation control under dynamic inflow condition[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2128-2135.
[4] QI Xiao-gang, WANG Zhen-yu, LIU Li-fang, LIU Xing-cheng, MA Jiu-long. Reliable and efficient routing of wireless sensors and actuator networks[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1964-1972.
[5] ZHOU Hua, CHEN Li, DUAN Deng-ping. Sliding mode control of trajectory tracking for underactuated aerostat[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1412-1420.
[6] YANG Yi-ling, LOU Jun-qiang, WEI Yan-ding, FU Lei, TIAN Geng, ZHAO Xiao-wei. Optimal placement of piezoelectric actuators using synthetic modal control force[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(5): 841-847.
[7] DING Chuan, DING Fan, ZHOU Xing, MAN Zai-peng, YANG Can-jun. Design and comparative experimental study of novel pressure-resistant oil-immersed proportional actuator[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(3): 451-455.
[8] WEI Jian-hua, GUO Kai, XIONG Yi. Synchronized motion control for multi-axis electro-hydraulic system of large equipment[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(5): 755-760.
[9] ZHU Xu, WEI Jian-hua, FANG Jin-hui. Dynamic characteristics of pilot-operated electro-hydraulic
flow distribution system
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(2): 193-200.
[10] LIN Chao, YU Song-song, CHENG Kai, Cui Xin-hui, TAO You-tao,WANG Jing-chao. Dynamic analysis and testing of micro/nano-positioning platform[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(8): 1375-1381.
[11] LIN Chao, YU Song-song, TAO Gui-bao, CHENG Kai, TAO You-tao, SU Xin-hong. Static and dynamic optimal design of bridge-type mechanism of
micro/nano-positioning platform
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(6): 1067-1073.
[12] JIANG Jun-Xia, FAN Zi-Chun, GUO Zhi-Min, KE Yang-Lin. Design and optimization of flexible assembly platform used for
three sections joint
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(9): 1798-1804.
[13] GUO Zhi-Min, JIANG Jun-Xia, KE Yang-Lin. Posture alignment internal force in three-axis actuators based
assembly system for large aircraft parts
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(8): 1508-1513.
[14] XIAO Na, RONG Li, DONG Dan-Lin. Optimal placements of actuators in vibration active control for
doublelayer spherical grid shell structures
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(5): 942-949.
[15] GUO Zhi-min, JIANG Jun-xia, KE Ying-lin. Static stiffness of three-axis actuators based posture alignment
system for large aircraft components
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(11): 2077-2082.