Please wait a minute...
J4  2012, Vol. 46 Issue (8): 1375-1381    DOI: 10.3785/j.issn.1008-973X.2012.08.004
    
Dynamic analysis and testing of micro/nano-positioning platform
LIN Chao, YU Song-song, CHENG Kai, Cui Xin-hui, TAO You-tao,WANG Jing-chao
The State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to analyze the dynamic performances of the micro/nano-positioning platform, the dynamic model of the 5-degreeoffreedom micro/nano-positioning platform was established with Lagrange equation, then the analytical formulas of natural frequencies and step responses of the platform were deduced. Based on finite element method, the top five-order natural frequencies and mode shapes were obtained. Furthermore, the static and dynamic performances testing were completed under different driving frequencies and load conditions. The results indicate that the open-loop setting time is 0.812 s, the resonance phenomenon occurs when the driving frequency is 100 Hz, and the stability of the platform is superb if the load is less than 10 N. Meanwhile, the resolutions of the piezoelectric actuator, the capacitance sensor and the platform by dynamic testing are 4nm, 10nm and 45nm respectively, and the repeated accuracy of positioning of the platform is 0.6 μm.



Published: 23 September 2012
CLC:  TH 139  
Cite this article:

LIN Chao, YU Song-song, CHENG Kai, Cui Xin-hui, TAO You-tao,WANG Jing-chao. Dynamic analysis and testing of micro/nano-positioning platform. J4, 2012, 46(8): 1375-1381.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2012.08.004     OR     http://www.zjujournals.com/eng/Y2012/V46/I8/1375


微/纳米定位平台的动态特性分析与试验

为了分析微/纳传动平台的动态特性,应用拉格朗日方程,建立5自由度微/纳米定位平台的动力学模型,推导出固有频率及阶跃响应的解析式.采用有限元方法,仿真得到平台的前5阶固有频率和模态阵型.在不同驱动频率和不同加载下,分别进行静、动态试验,结果表明,平台的开环调节时间为0.812 s;驱动频率为100 Hz时,发生共振现象;加载小于10 N时,平台具有较好的稳定性;动态试验得到压电陶瓷、电容传感器和平台的分辨率分别为4、10和45 nm,且平台的重复定位精度为0.6 μm.

[1] KYUNG S M, WOO C C, SHIN H S. Static and dynamic analysis of a nanopositioning flexurehinge stage with a flexible lever mechanism [J]. Engineering Manufacture, 2005, B08504: 447-454.
[2] 马立,荣伟彬,孙立宁.三维纳米级微动工作台的设计与分析[J].光学精密工程,2006,14(6):1017-1024.
MA Li,RONG Weibin,SUN Lining. Design and analysis of a novel 3DOF nanopositioning stage [J]. Optics and Precision Engineering, 2006, 14(6): 1017-1024.
[3] YUEN K Y, SUMEET S A, MOHEIMAN S O, et al. Design, analysis and control of a fast nanopositioning stage [C]∥Proceedings of the 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Xi’an: [s. n.], 2008: 451-456.
[4] ZHANG D Y, TANKAHITO O, MASAYO E, et al. Piezoactuatorintegrated monolithic microstage with six degrees of freedom[J]. Sensors and Actuators, 2005, 122: 301-306.
[5] WOUTE O S, FRANS G M K,HANS T, et al. Dimensionless design graphs for flexure elements and a comparison between three flexure elements [J]. Precision Engineering, 2005, 29(1): 41-47.
[6] 张彦斐,宫金良.2自由度大行程微定位平台结构与参数设计[J].机械工程学报, 2010, 46(23): 30-35.
ZHANG Yanfei, GONG Jinliang. Structure and parameter design for two degrees of freedom micropositioning mechanism with large travel [J]. Journal of Mechanical Engineering, 2010, 46(23): 30-35.
[7] POLIT S, DONG J Y. Development of a highbandwidth XY Nanopositioning stage for highRateMicro/nanomanufacturing[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(4): 724-733.
[8] LI Y M, XU Q S. A totally decoupled piezodriven XYZ flexure parallel micropositioning stage for micro/nanomanipulation [J]. IEEE Transactions on Automation Science and Engineering, 2011, 8(2): 265-279.
[9] CHENG L, ZHANG C J, ZHANG G L. Highspeed and Largerange scanning control of a piezoelectric stack actuated platform [C]∥Proceedings of the 8th World Congress on Intelligent Control and Automation. Jinan: Shandong University Press, 2010: 5523-5527.
[10] TANG X Y, CHEN I M, LI Q, et al. Design and nonlinear modeling of a largedisplacement XYZ flexure parallel mechanism with decoupled kinematic structure[J]. Scientific Instruments, 2006, 77 (115101):1-11.

[11] DEEPKI, DONG J Y, EAKKACHAI P W, et al. A SOIMEMSbased 3DOF planar parallelkinematics nanopositioning stage[J]. Sensors and Actuators, 2008, A147: 340-351.
[12] DONG J Y, YAO Q, PLACID M F, et al. Dynamics,control and performance analysis of a novel parallelkinematics mechanism for integrated, multiaxis nanopositioning[J]. Precision Engineering, 2008, 32: 20-33.
[13] HOWELL L L. Compliant mechanisms[M]. New York: Wiley Interscience, 2001: 60-70.
[14] 林超,俞松松,程凯,等.大行程5DOF微/纳米传动平台的设计及特性分析[J].中国机械工程,2010,21(22): 2679-2684.
LIN Chao, YU Songsong, CHENG Kai, et al. Design and analysis of a longdisplacement 5DOF nanotransmission platform[J]. China Mechanical Engineering, 2010, 21(22): 2679-2684.
[15] 张宪民,王华,胡存银.压电陶瓷驱动三自由度精密定位系统的弹性动力学与输入调理特性研究[J].振动工程学报,2007,20(1): 9-14.
ZHANG Xianmin, WANG Hua, HU Cunyin. Elastic dynamic and input tuning analys is of a piezoelectric ceramics actuated 3DOF compliant precision micropositioning stage [J]. Journal of Vibration Engineering, 2007, 20(1): 9-14.

[1] LIN Chao, TAO You-tao, CHENG Kai, YU Song-song, LIU Lei. Displacement coupling analysis of micro/nano transmission platform[J]. J4, 2013, 47(4): 720-727.
[2] LIN Chao, YU Song-song, TAO Gui-bao, CHENG Kai, TAO You-tao, SU Xin-hong. Static and dynamic optimal design of bridge-type mechanism of
micro/nano-positioning platform
[J]. J4, 2012, 46(6): 1067-1073.