Please wait a minute...
J4  2012, Vol. 46 Issue (8): 1382-1389    DOI: 10.3785/j.issn.1008-973X.2012.08.005
    
Experiment study on flow compensation of electro-hydraulic flow
matching control system in hydraulic excavator
XU Bing1, LIU Wei1,2, YANG Hua-yong1, ZHANG Sheng-feng1
1. State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China;
2. Zoomlion Heavy Industry Science and Technology Co., Ltd., Changsha 410013, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to obtain an advanced operation performance and an improved energy efficiency of hydraulic systems in excavators, electro hydraulic flow matching control (EFMC) systems were introduced, in which electro-proportional valves and electro-proportional pumps worked in a synchronous control mode. The principle and characteristics of EFMC systems were analyzed in the experimental prototype of 2-ton excavator that installed an EFMC system. Based on the characteristics of system pressure and flow rate, the open-loop flow compensation of the excavator was experimentally studied under the conditions of light and heavy loads. Real-time velocity was monitored and used to carry out flow closed-loop control indirectly. Both on the boom and bucket, the velocity characteristics of single and compound action were experimentally investigated with different loads and reference velocities. The experimental results indicate that the accuracy of flow control is improved by the use of flow compensation methods. Compared with the load-sensing system, the EFMC system has a more improved capability. The pressure margin of the EFMC system is reduced by more than 0.6-0.7 MPa, and the systemic performance of dynamic response and energy efficiency are improved.



Published: 23 September 2012
CLC:  TH 137.5  
Cite this article:

XU Bing, LIU Wei, YANG Hua-yong, ZHANG Sheng-feng. Experiment study on flow compensation of electro-hydraulic flow
matching control system in hydraulic excavator. J4, 2012, 46(8): 1382-1389.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2012.08.005     OR     http://www.zjujournals.com/eng/Y2012/V46/I8/1382


挖掘机电液流量匹配控制系统流量补偿试验

为改善挖掘机液压系统的操控性和节能性,采用电比例泵和电比例多路阀同步控制方式的电液流量匹配控制系统.以2 t挖掘机试验样机为研究对象,分析电液流量匹配控制系统的结构原理和特点;针对挖掘机轻重负载不同工况,测试系统的压力和流量特性,通过试验研究基于压力特性的开环流量补偿方法.利用实时检测的油缸速度间接实现流量闭环控制,试验分析动臂、铲斗单执行器动作和复合动作的速度控制特性,并对系统进行变负载、变速度工况测试.试验结果表明:采用流量补偿方法提高系统的流量控制精度;电液流量匹配控制系统与负载敏感系统相比,泵的压力裕度减小0.6~0.7 MPa,提高了系统的节能性和动态响应性.

[1] LANTTO B. On fluid power control with special reference to multiload conditions in load sensing systems [D]. Linkoping: Linkoping University, 1992: 2-40.
[2] 王庆丰,魏建华,吴根茂,等.工程机械液压控制技术的研究进展与展望[J].机械工程学报,2003,39(12): 51-56.
WANG Qingfeng, WEI Jianhua, WU Genmao, et al. Progress and prospects in the research of hydraulic control for construction machine [J]. Chinese journal of mechanical engineering, 2003, 39(12): 51-56.
[3] 孔晓武.带长管道的负载敏感系统研究[D].杭州:浙江大学,2003: 5-30.
KONG Xiaowu. Research on the loadsensitive system with long tipe [D]. Hagnzhou: Zhejiang University, 2003: 5-30.
[4] CETINKUNT S, PINSOPON U, CHEN C. Positive flow control of closedcenter electrohydraulic implementbywire systems for mobile equipment applications [J]. Mechatronics, 2004, (14): 403-420.
[5] FEDDE T, HARMS H H. An adaptive hydraulic system for mobile applications [C]∥Proceedings of the 5th International Fluid Power Conference. Aachen, Germany: IFK, 2006: 95-106.
[6] FEDDE T, LANG T, HARMS H H. An adaptable hydraulic system for tractors [C]∥Proceedings of Power Transmission and Motion Control. BATH, UK: PTMC, 2005: 307-316.
[7] DUROVIC M, HELDUSER S. New control strategies for electrohydraulic load sensing [C]∥Proceedings of the Bath Workshop on Power Transmission and Motion Control. BATH, UK: PTMC, 2004: 201-210.
[8] HELDUSER S, DJUROVIC M. Control strategies for loadsensing in mobile machinery [C]∥Proceedings of the 6th International Conference on Fluid Power Transmission and Control. Hangzhou: ICFP, 2005: 32-42.
[9] FINZEL R., HELDUSER S. New electrohydraulic control systems for mobile machinery [C]∥Proceedings of the Fluid Power and Motion Control FPMC 2008. BATH, UK: FPMC, 2008: 309-321.
[10] GROSBRINK B, HARMS T. Control concept for an advanced loadsensing system [C]∥Proceedings of the 7th International Conference on Fluid Power Transmission and Control. Hangzhou: ICFP, 2009: 201-204.
[11] FINZEL R, HELDUSER S, JANG D S. Electrohydraulic control systems for mobile machinery with low energy consumption [C]∥Proceedings of the 7th International Conference on Fluid Power Transmission and Control. Hangzhou: ICFP,2009: 214-219.
[12] 张栋,许纯新,金立生,等.挖掘机单神经元比例积分微分节能控制系统[J].西安交通大学学报,2004,38(5): 529-532.
ZhANG Dong, XU Chunxin, JIN Lisheng, et al. Research on energy saving control system of hydraulic excavator based on selfadaptive single neuron proportionintegraldifferential [J]. Journal of Xi’an Jiaotong University, 2004, 38(5): 529-532.

[1] XU Bing, SONG Yue-chao, YANG Hua-yong. Optimization of swash-plate cross angle noise-reduction structure for swash-plate-type axial piston pump[J]. J4, 2013, 47(6): 1043-1050.
[2] XU Bing, ZHANG Jun-hui, YANG Hua-yong, YE Shao-gan. Simulation on noise reduction of tandem axial piston pump
utilizing indexing angle
[J]. J4, 2013, 47(1): 94-101.
[3] LIU Wei, XU Bing, YANG Hua-yong, ZHU Xiao-jun. The characteristics of electrohydraulic flow matching control
systems for excavators based on LUDV multi-way valve
[J]. J4, 2012, 46(8): 1360-1368.
[4] WANG Hang-Zhou, QIN Hua-Wei, YANG Can-Jun, et al. Fatigue life of PEEK poppet for deep-sea hydrothermal fluid sampling valve[J]. J4, 2010, 44(1): 14-18.
[5] ZHANG Bin, XU Bing, YANG Hua-Yong, et al. Study on control performance of digital piston pump based on virtual prototype technology[J]. J4, 2010, 44(1): 1-7.