Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (11): 2179-2189    DOI: 10.3785/j.issn.1008-973X.2020.11.013
    
Schematic design of mechanism system based on transmission affordance evaluation
Sarina1,2,3(),Shu-you ZHANG2,Le-miao QIU2,Li-chun ZHANG3
1. Institute of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
2. Institute of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
3. Canny Elevator Co. Ltd, Suzhou 215213, China
Download: HTML     PDF(1147KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A novel schematic design method of mechanism transmission system based on transmission affordance evaluation was presented aiming at the problem that the function-based design method cannot integrate non-functional impact into the schematic design stage of the mechanical transmission system. Firstly, the definition of transmission affordance was given. An association model was constructed to demonstrate the relationship of design requirement, transmission type, transmission part and transmission affordance. Then, the association model was represented by polychromatic sets theory, through viewing design requirements as uniform color, transmission type as individual color, transmission part as element, transmission affordance as constraint uniform, and feature of transmission affordance as constraint uniform. The transmission type combination schemes’ rough set was obtained by two kinds of contour reasoning and conjunctive rules inference based on the association model. One kind of contour reasoning was the reasoning between design requirements and transmission type, and the other was the reasoning between trainsmission type and transmission part. Additionally, a multi-objective zero one linear programming model for optimal configuration of transmission components was developed, considering the uniform color evaluation of mechanical transmission constraints as a design criterion. The purpose of the design criterion was to minimize the functional affordance information, and maximize the non-functional ideal degree. Finally, the optimal transmission system configuration scheme was solved by the improved Cuckoo algorithm that utilizing skip path binary location update mechanism and diversity measure. The effectiveness of the proposed method was verified by an example.



Key wordstransmission system      schematic design      transmission affordance      polychromatic set      Cuckoo search algorithm     
Received: 30 December 2019      Published: 15 December 2020
CLC:  TH 122  
Cite this article:

Sarina,Shu-you ZHANG,Le-miao QIU,Li-chun ZHANG. Schematic design of mechanism system based on transmission affordance evaluation. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2179-2189.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.11.013     OR     http://www.zjujournals.com/eng/Y2020/V54/I11/2179


基于传动可供性评价的机械系统方案设计方法

针对基于功能的设计方法无法将非功能性作用融入机械系统方案设计阶段的问题,提出传动可供性评价的机械系统方案设计方法. 给出传动可供性定义;构建设计需求、传动类型、传动元件、传动可供性的关联关系模型;以设计需求为统一颜色、传动类型为个人颜色、传动件为元素、传动可供性为约束、传动可供性性质为约束统一颜色,建立机械传动系统多色模型. 通过设计需求与传动类型、传动类型与传动件围道推理及合取规则,获得传动类型组合方案粗糙集. 考虑机械传动件约束统一颜色评估为设计准则,以功能可供性信息量最小、非功能可供性理想度最大为综合评价目标,建立传动元件配置优化多目标0-1线性规划模型. 借助跳跃路径二进制位置更新机制和多样性测度维护的布谷鸟算法求解最优传动系统配置方案. 以实例验证该方法的有效性.


关键词: 传动系统,  方案设计,  传动可供性,  多色集合,  布谷鸟算法 
Fig.1 Associations of reducermechanicaltransmission system design factors
标记 S O V F
Ch1 a1箱体 a2轴承 箱体变形引起轴承轴向卡死 ?
Ch2 a1箱体 a2轴承 轴承不对中 ?
Cb1 a1箱体 a2轴承 支撑 +
Ch3 a3 a2轴承 轴热膨胀引起轴承轴向卡死 ?
Ch4 a3 a2轴承 轴承不对中 ?
Cb2 a2轴承 a3 支撑 +
Ch5 a3 a4齿轮 轴变形引起齿轮偏载 ?
Ch6 a3 a4齿轮 齿轮轴向载荷承载 ?
Ch7 a4齿轮 a4齿轮 齿轮振动 ?
Ch8 a4齿轮 a4齿轮 齿轮啮合传动引起齿轮之间
非正确啮合
?
Ch9 a2轴承 Ov环境 轴承滚动体的滚动引起
碰撞轴承噪声
?
Ch10 a4齿轮 Ov环境 噪声 ?
Tab.1 Transmission affordance analysis of gear box
Fig.2 Polychromatic model of mechanism transmission system based on transmission affordance
Fig.3 Multi-objective configuration model of transmission parts based on transmission affordance evaluation
Fig.4 Cuckoo location coding
Fig.5 Flowchart of multi-objective configuration of transmission parts
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14
f1 1 0 0 1 0 1 0 1 0 0 0 1 1 0
f2 1 0 0 1 1 1 0 1 1 0 0 1 1 0
$\vdots$
f11 1 0 0 1 1 0 0 0 0 1 0 1 0 0
f12 1 0 0 0 1 1 0 0 0 1 0 0 0 0
Tab.2 Transmission type and design requirements contour matrix
f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12
a1 1 1 0 0 0 0 0 0 0 0 0 0
$\vdots $
a12 0 0 0 0 0 0 0 0 0 1 1 1
$\vdots $
a26 1 0 0 1 1 1 1 1 0 0 0 0
$\vdots $
a32 1 1 0 1 1 1 1 1 1 0 0 0
Tab.3 Transmission parts and transmission type contour matrix
编号 规格 D0 /mm (I) W0 /mm (I) Cr/kN (I) Cor/kN (I) ng /(r·min?1) (I) Itot V
输入轴 1 6204-ZN 47(0.7584) 14(4.0947) 12.8(2.5728) 6.65(2.9961) 14000(1.4406) 12.9406 6.2
$\vdots $
5 32004 42(1.6022) 15(3.3980) 25.0(1.2594) 28.20(0.4741) 8500(2.1605) 10.6827 92.0
中间轴 6 NJ2207E 72(1.6096) 23(2.8646) 57.5(1.8169) 63.00(1.3001) 7500(0.2227) 7.8139 46.0
$\vdots $
10 6307-2Z/VA208 80(0.8496) 21(3.5864) 35.1(2.7213) 19.00(3.3061) 350(4.8210) 15.2844 114.0
输出轴 11 61911 80(1.8211) 13(2.6034) 15.9(4.5710) 13.20(4.9921) 7500(0.2227) 14.2104 182.0
$\vdots $
15 22312 EK 130(0.0000) 46(0.1240) 325.0(0.0000) 335.00(0.0000) 4000(1.1659) 1.2898 6.2
Tab.4 Bearing candidate specifications, transmission function affordance information and price
传动可供性 箱体 轴承 齿轮 环境 有害关系数
箱体 ? Cb5 Cb1Cb2 ? ? 2
? ? Cb4 Cb3 Ch4 2
轴承 ? Cb3 Cb7 ? Ch3 3
齿轮 ? Cb6 ? Cb8 Ch5 2
Tab.5 Transmission affordance constraints of reducer components and harmful relationship number
编号 候选规格 非功能可供性 L
不对中性 低跳动性 高刚度性 低摩擦性 配置可调 PB /% PH /%
输入轴 1 6204-ZN ? +++ +++ ? 77.8 22.2 3.5
$\vdots $
5 32004 ? ++ + 83.3 16.7 5.0
中间轴 6 NJ2207E ? ++ ++ +++ ? 77.8 22.2 3.5
$\vdots $
10 6307-2Z/VA208 ? +++ +++ ? 77.8 22.2 3.5
输出轴 11 61911 ? +++ +++ ? 77.8 22.2 3.5
$\vdots $
15 22312 EK +++ ++ +++ ? 90.0 10.0 9.0
Tab.6 Evaluation and ideality of nonfunctional affordance of candidate specifications of bearings
Fig.6 Solutions contrast between improved CS search and improved NSGAⅡ algorithms
Fig.7 Candidate bearing model configuration scheme solved under different nonfunctional affordance ideal values
Fig.8 Candidate bearing model configuration scheme solved under different cost constraints
Fig.9 Candidate bearing model configuration scheme solved with proposed method and method without considering nonfunctional affordance ideality
[1]   祖耀. 功能特征驱动的机械产品概念设计研究[D]. 武汉: 华中科技大学, 2009.
ZU Yao. Research on the conceptual design of mechanical products based on functional feature-drived [D]. Wuhan: Huazhong University of Science and Technology, 2009.
[2]   徐敬华, 张树有. 基于关联与回溯的产品变异设计过程重用方法[J]. 浙江大学学报: 工学版, 2010, 44(11): 2063-2069.
XU Jing-hua, ZHANG Shu-you. Process reuse of product variation design based on associating and backtracking [J]. Journal of Zhejiang University: Engineering Science, 2010, 44(11): 2063-2069.
[3]   郑浩, 冯毅雄, 高一聪, 等 基于性能演化的复杂产品概念设计求解过程研究[J]. 机械工程学报, 2018, 54 (9): 214- 223
ZHENG Hao, FENG Yi-xiong, GAO Yi-cong, et al The solving process of conceptual design for complex product based on performance evolution[J]. Journal of Mechanical Engineering, 2018, 54 (9): 214- 223
[4]   魏巍 定制产品需求只是重构及粗糙集分析方法[J]. 计算机集成制造系统, 2012, 18 (2): 230- 236
WEI Wei Customization products requirement knowledge reconstruction and rough set analysis method[J]. Computer Integrated Manufacturing Systems, 2012, 18 (2): 230- 236
[5]   JERZY P, KONRAD O, et al Knowledge based processes in the context of conceptual design[J]. Journal of Industrial Information Integration, 2019, 15: 219- 238
doi: 10.1016/j.jii.2018.07.002
[6]   ANTONIO J F G, LUIS I, ANTONIO C, et al A recommender system for component-based applications using machine learning[J]. Knowledge Based System, 2019, 15 (164): 68- 84
[7]   JIANG S F, JING L T, SUN T, et al A conceptual scheme improvement approach based on the performance value of the principle solution taking a coal mining machine as a case study[J]. Computers in Industry, 2019, (105): 17- 34
[8]   JONATHAN R, GEORGES M F Affordance based design: a relational theory for design[J]. Research in Engineering Design, 2009, 20 (1): 13- 27
doi: 10.1007/s00163-008-0060-3
[9]   JONATHAN R, GEORGES M F Affordance-based design methods for innovative design redesign and reverse engineering[J]. Research in Engineering Design, 2009, 20 (4): 225- 239
doi: 10.1007/s00163-009-0064-7
[10]   JONATHAN R, GEORGES M F, BATTISTO D G An affordance-based approach to architectural theory, design, and practice[J]. Design Studies, 2009, 30 (4): 393- 414
doi: 10.1016/j.destud.2009.01.002
[11]   SEIB V, KNAUF M, PAULUS D. Affordanceorigami: unfolding agent models for hierarchical affordance prediction [C]// 11th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. Rome: IEEE, 2017, 693: 555-574.
[12]   MAIER J R A, EZHILAN T, FADEL G M. The affordance structure matrix: aconcept exploration and attention directing tool for affordance based design [C]// ASME International Design Engineering Technical Conferences/Computers and Information in Engineering Conference. Las Vegas: ASME, 2008, 3: 277-287.
[13]   CHEN Yong, HUANG Jian, ZHANG Zhi-nan, et al A part affordance-based approach for capturing detailed design knowledge[J]. Computer-Aided Design, 2013, 45 (12): 1617- 1629
doi: 10.1016/j.cad.2013.08.005
[14]   HSIAO S W, HSU C F, LEE Y T An online affordance evaluation model for product design[J]. Design Studies, 2012, 33 (2): 126- 159
doi: 10.1016/j.destud.2011.06.003
[15]   CORMIER P, OLEWNIK A, LEWIS K Toward a formalization of affordance modeling for engineering design[J]. Research in Engineering Design, 2016, 25 (3): 259- 277
[16]   YOU H C, CHEN K Application of affordance and semantics in product design[J]. Design Studies, 2007, 28 (1): 23- 38
doi: 10.1016/j.destud.2006.07.002
[17]   姜少飞, 周升铭, 李吉泉, 等 基于物-场可供性模型提升产品设计质量的研究[J]. 机械工程学报, 2016, 52 (15): 128- 138
JIANG Shao-fei, ZHOU Sheng-ming, LI Ji-quan, et al enhancing the quality of product design based on substance-field affordance[J]. Journal of Mechanical Engineering, 2016, 52 (15): 128- 138
doi: 10.3901/JME.2016.15.128
[18]   ABTEEN I M, MOJAN M, ASHKAN H, et al Hybrid hierarchical fuzzy group decision-making based on information axioms and BWM: prototype design selection[J]. Computers and Industrial Engineering, 2019, 127: 788- 804
doi: 10.1016/j.cie.2018.11.018
[19]   YANG X S, DEB S. Cuckoo search via levy flights [C]// Proceedings of world Congress on Nature and Biologically Inspired Computing. Piscataway, Coimbatore: IEEE, 2009: 210-214.
[20]   YANG X S, DEB S Multiobjective cuckoo search for design optimization[J]. Computers and Operation Research, 2011, 10 (9): 1- 9
[21]   刘建华. 粒子群算法的基本理论机器改进研究[D]. 长沙: 中南大学, 2009: 77-98.
LIU Jian-hua. The research of basic theory and improvement on particle swarm optimization [D]. Changsha: Central South University, 2009: 77-98.
[22]   李敏强, 寇纪淞, 林丹, 等. 遗传算法的基本理论与应用[M]. 北京: 科学出版社, 2002.
[23]   成大先. 机械设计手册(第6版): 单行本. 机械传动[M]. 北京: 化学工业出版社. 2017.
[24]   SKF Website. Rolling bearings. [DB/OL]. https://www.skf.com/binary/31-121486/0901d196802809de-Rolling-bearings17000_1-EN.pdf. 2019-09-07.
[1] Yang-jian LI,Wei HE,Hong-wei LIU,Wei LI,Yong-gang LIN,Ya-jing GU. Active damping control for drive train of horizontal-axis tidal current turbines[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1355-1361.
[2] Lei GUO,Xiu-fen ZHANG. Remanufacturing parallel disassembly sequence planning method driven by multiple failures[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2233-2246.
[3] ZHU Xiao-hua, WANG Ning. Cuckoo search algorithm with RNA crossover operation for PID control of overhead cranes[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1397-1404.
[4] YANG Hui-hua,XIE Pu-mo, ZHANG Xiao-feng, MA Wei, LIU Zhen-bing. Improved cuckoo search algorithm for multi-objective optimization problems[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1600-1608.
[5] YAN Bo, JIANG Dao-zhuo, GAN De-qiang, ZANG Yu-qing. An UPFC nonlinear robust controller based on feedback
linearization H∞ method
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(11): 1975-1980.