Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (11): 2233-2246    DOI: 10.3785/j.issn.1008-973X.2020.11.019
    
Remanufacturing parallel disassembly sequence planning method driven by multiple failures
Lei GUO1(),Xiu-fen ZHANG1,2,3,*()
1. College of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
2. State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
3. Canny Elevator Co. Ltd, Suzhou 215213, China
Download: HTML     PDF(1743KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A remanufacturing parallel disassembly sequence planning (RPDSP) method driven by multiple failures was proposed in order to overcome the influence of connection failure and component non-disassembly caused by failures on the disassembly sequence. A hierarchical multiple failures transfer chain model was constructed through analyzing the non-detachability and failure characteristics of the parts to describe the relationship among the failure type, failure degree, scrap level, recycling decision, and disassembly mode of parts. Furthermore, the model was formally described in mathematically language and mapped into a polychromatic graph model of multiple failures information transfer chain based on the polychromatic sets theory, which is convenient for computer programming and manipulating. On this basis, the disassembly mode of parts can be identified by polychromatic reasoning. The information of part failure was integrated into the disassembly information model, and then a destructible disassembly information model was established, and the disassemblability formula was derived. A multi-layer chromosome coding method including disassembled node layer and destruction constraint layer was proposed to represent the partial destructive information of the product. An initial population acquisition method considering the part recycling decision was designed to eliminate unreasonable sequences. The RPDSP was realized by chromosome evolution rules such as selection, crossover and mutation operator. Finally, a case study of washing machine was used to demonstrate the feasibility and effectiveness of the proposed method.



Key wordspolychromatic sets      remanufacturing      parallel disassembly sequence planning      disassembly mode      multiple failures     
Received: 09 November 2019      Published: 15 December 2020
CLC:  TH 122  
Corresponding Authors: Xiu-fen ZHANG     E-mail: 1499326118@qq.com;xxff6188@163.com
Cite this article:

Lei GUO,Xiu-fen ZHANG. Remanufacturing parallel disassembly sequence planning method driven by multiple failures. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2233-2246.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.11.019     OR     http://www.zjujournals.com/eng/Y2020/V54/I11/2233


多重故障驱动的再制造并行拆卸序列规划方法

为了克服由故障导致的连接失效、不可拆卸对拆卸序列的影响,提出多重故障驱动的再制造并行拆卸序列规划(RPDSP)方法. 通过分析零件的不可拆卸性以及故障特征,构建层次式多重故障传递链模型,描述产品零部间的故障类型、故障程度、报废程度、回收决策、拆卸模式等信息. 为了方便计算机编程,应用多色集合理论对模型进行数学描述,映射为多重故障信息传递多色模型,通过多色推理识别出零部件的拆卸模式. 将零件故障信息融入拆卸模型,建立可破坏性拆卸信息模型,并推导出可拆卸性条件. 为了表示零件可破坏信息,提出包含拆卸节点层和破坏约束层的多层染色体编码方法. 设计考虑零部件回收决策的初始种群获取方法以剔除不合理序列,通过选择、交叉、变异等进化机制实现多重故障驱动的可破坏再制造并行拆卸序列寻优. 以波轮式洗衣机为案例验证所提方法的可行性和有效性.


关键词: 多色集合,  再制造,  并行拆卸序列规划,  拆卸模式,  多重故障 
Fig.1 Schematic diagram of friction drive device
Fig.2 Disassembly hybrid graph model of friction drive device
故障特征 故障程度 报废原因 回收决策
老化( ${f_1}$ 轻微故障( ${c_1}$ 尺寸不合格( ${b_1}$ 废弃( ${h_1}$
磨损( ${f_2}$ 一般故障( ${c_2}$ 残余价值低( ${b_2}$ 材料回收( ${h_2}$
腐蚀( ${f_3}$ 中等故障( ${c_3}$ 性能不足( ${b_3}$ 再制造( ${h_3}$
变形( ${f_4}$ 严重故障( ${c_4}$ 无法修复( ${b_4}$ 重用( ${h_4}$
无失效( ${f_5}$ ? 材料缺失( ${b_5}$ ?
断裂( ${f_6}$ ? 配对零件丢失( ${b_6}$ ?
孔洞( ${f_7}$ ? 无( ${b_7}$ ?
烧伤( ${f_8}$ ? ? ?
其他( ${f_9}$ ? ? ?
Tab.1 Part failure and recycling decision information
Fig.3 Transfer chain of hierarchical multiple failures
Fig.4 Hierarchical multiple failover chain mapping mechanism
序号 名称 回收决策 拆卸模式
1 安装台 重用 非破坏操作
2 弹簧 再制造 非破坏操作
3 螺栓1 报废 破坏操作
4 调节轴 再制造 非破坏操作
5 主动臂 再制造 非破坏操作
6 螺栓2 报废 破坏操作
7 主动轮 再制造 非破坏操作
Tab.2 Friction device recycling decision and disassembly mode
Fig.5 Mapping process of process of partial destructive disassembly steps and chromosome code
Fig.6 Initial population acquisition incorporating component recycling decision
Fig.7 Examples of chromosome crossing process
编码 名称 tb /s td /s 拆卸方向 Cu /元 Cd /元
1 前盖板 112 46 ?X 0.160 0.310
2 配重 30 12 ?X 0.080 5.110
3 进水管 200 40 +Z 0.320 0.760
4 进水控制阀 132 34 +Z 0.310 0.370
5 外筒盖 314 88 ? 0.510 3.760
6 上盖板 80 32 +Z 0.220 0.286
7 内筒 304 64 +Y 0.290 0.840
8 叉形架 2 2 +Y 0.006 0.006
9 平衡块 10 4 +Y 0.028 0.170
10 大带轮 10 4 +Y 0.028 0.170
11 后盖板 128 52 +Y 0.360 0.360
12 小带轮 100 20 +Y 0.280 0.280
13 电机 114 28 +Y 0.250 0.450
14 外筒主体 440 102 ? 0.570 0.170
15 洗衣机排水管 402 84 +Y 0.340 1.120
16 箱体 150 60 ? 0.320 0.420
17 排水泵 40 16 ?Y 0.110 0.110
18 阻尼器 40 16 ?Y 0.110 0.170
19 外筒排水管 110 24 ?Y 0.230 0.310
20 温控器 40 16 ?Y 0.110 3.210
21 加热器 100 20 ?Y 0.280 3.190
Tab.3 Original parts disassembly information sheet
Fig.8 Explosion diagram of wave wheel washing machine
序号 名称 回收决策 拆卸模式
3 进水管 报废 破坏操作
5 外筒盖 报废 破坏操作
7 内筒 再制造 非破坏操作
8 叉形架 再制造 非破坏操作
11 后盖板 报废 破坏操作
14 外筒主体 材料回收 破坏操作
15 排水管 再制造 非破坏操作
Tab.4 Recycling decision data of washing machine
类型 目标组件 t /s 最优序列
无故障
影响
零部件7 1632 (6)?(1, 11)?(9, 10)?(14, 15)?(8)?
(4, 18)?(3, 17)?(9, 8)?(7)
考虑故
障影响
破坏零件11 1388 (10, 6)?(3, 1)?(9)?(14, 15)?(8, 18)?
(17)?(19, 7)?(5)
考虑故
障影响
破坏零件5 884 (11)?(10, 9)?(14)?(8)?(7)
Tab.5 Disassembly sequence planning results of different types of wave washing machines
Fig.9 RPDSP for product under partial destructive mode
Fig.10 Partial destruction disassembly sequence planning time
Fig.11 Change rule of total disassembly time with iteration number under RPDSP
Fig.12 Relationship between partial destruction disassembly parallelism and disassembly time
Fig.13 Relationship between population size and results of disassembly sequence planning
Fig.14 Relationship between number of iterations and results of disassembly sequence planning
[1]   姚巨坤, 杨俊娥, 朱胜 废旧产品再制造质量控制研究[J]. 中国表面工程, 2006, 19 (1): 115- 117
YAO Ju-kun, YANG Jun-e, ZHU Sheng Quality control in remanufacturing waste product[J]. China Surface Engineering, 2006, 19 (1): 115- 117
[2]   GUNGOR A, GUPTA S M Disassembly sequence planning for products with defective parts in product recovery[J]. Computer and Industrial Engineering, 1998, 35 (1/2): 161- 164
[3]   张秀芬. 复杂产品可拆卸性分析与低碳结构进化设计技术研究[D]. 杭州: 浙江大学, 2011.
ZHANG Xiu-fen. Complex product disassemblability analysis and structure design for low-carbon [D]. Hangzhou: Zhejiang University, 2011.
[4]   朱卓悦, 徐志刚, 沈卫东, 等 基于遗传蝙蝠算法的选择性拆卸序列规划[J]. 浙江大学学报: 工学版, 2018, 52 (11): 2120- 2127
ZHU Zhuo-yue, XU Zhi-gang, SHEN Wei-dong, et al Selective-disassembly sequence planning based on genetic-bat algorithm[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (11): 2120- 2127
[5]   XIE Y, HUANG M, ZHONG Y, et al Disassembly sequence planning based on the simulated annealing and genetic algorithm[J]. Mechanical Engineer, 2007, 1: 44- 48
[6]   REN Y, TIAN G, ZHAO F, et al Selective cooperative disassembly planning based on multi-objective discrete artificial bee colony algorithm[J]. Engineering Applications of Artificial Intelligence, 2017, 64: 415- 431
doi: 10.1016/j.engappai.2017.06.025
[7]   ZHU B, SARIGECILI M Disassembly information model incorporating dynamic capabilities for disassembly sequence generation[J]. Robotics and CIM, 2013, 29: 396- 400
[8]   MITROUCHEV P, WANG C, LU L X, et al Selective disassembly sequence generation based on lowest level disassembly graph method[J]. The International Journal of Advanced Manufacturing Technology, 2015, 80: 141- 159
doi: 10.1007/s00170-015-6861-4
[9]   LUO Y, PENG Q, GU P, et al Integrated multi-layer representation and ant colony search for product selective disassembly planning[J]. Computers in Industry, 2016, 75: 13- 26
doi: 10.1016/j.compind.2015.10.011
[10]   邢宇飞, 李景春, 张景强 考虑作业空间约束的并行拆卸序列规划算法[J]. 计算机辅助设计与图形学学报, 2018, 30 (9): 1755- 1764
XING Yu-fei, LI Jing-chun, ZHANG Jing-qiang Parallel disassembly sequence planning method considering operation space constraints[J]. Journal of Computer-Aided Design and Computer Graphics, 2018, 30 (9): 1755- 1764
doi: 10.3724/SP.J.1089.2018.16858
[11]   张秀芬, 张树有 基于粒子群算法的产品拆卸序列规划方法[J]. 计算机集成制造系统, 2009, 15 (3): 508- 514
ZHANG Xiu-fen, ZHANG Shu-you Product disassembly sequence planning based on particle swarm optimization algorithm[J]. Computer Integrated Manufacturing Systems, 2009, 15 (3): 508- 514
[12]   SONG X W, ZHOU W D, PAN X X, et al Disassembly sequence planning for electromechanical product under a partial destructive mode[J]. Assembly Automation, 2013, 34 (1): 106- 114
[13]   FELDMANN K, TRAUTNER S, MEEDT O Innovative disassembly strategies based on flexible partial destructive tools[J]. Annual Reviews in Control, 1999, 23 (1): 159- 164
doi: 10.1016/S1367-5788(99)00017-6
[14]   LEE K, GADH R Destructive disassembly to support virtual prototyping[J]. IIE Transactions, 1998, 30 (10): 959- 972
[15]   GEUN P K, SODHI R Destructive disassembly of bolts and screws by impact fracture[J]. Journal of Manufacturing Systems, 2002, 21 (4): 316- 324
doi: 10.1016/S0278-6125(02)80170-4
[16]   UMEDA Y, MIYAJI N, SHIRAISHI Y, et al Proposal of a design method for semi-destructive disassembly with split lines[J]. Manufacturing Technology, 2015, 16: 246- 251
[17]   REAP J, BRAS B. Design for disassembly and the value of robotic semi-destructive disassembly [C]// Proceedings of ASME 2002 Design Engineering Technical Conferences and Information in Engineering Conferences. Montreal: ASME, 2002, 3: 275-281.
[18]   潘兴兴. 部分破坏模式下的机电产品拆卸序列规划方法研究[D]. 杭州: 浙江大学, 2012.
PAN Xing-xing. Research on electromechanical product disassembly sequence planning based on partial destruction mode [D]. Hangzhou: Zhejiang University, 2012.
[19]   周伟东. 基于局部破坏拆卸规划的可拆卸设计研究[D]. 杭州: 浙江大学, 2014.
ZHOU Wei-dong. The research of DFD method based on DSP under the partial destruction disassembly made [D]. Hangzhou: Zhejiang University, 2014.
[20]   宋小文, 潘兴兴 部分破坏模式下的机电产品拆卸序列规划[J]. 计算机集成制造系统, 2012, 18 (5): 927- 931
SONG Xiao-wen, PAN Xing-xing Electromechanical product disassembly sequence planning based on partial destruction made[J]. Computer Integrated Manufacturing Systems, 2012, 18 (5): 927- 931
[21]   陈旭玲, 楼佩煌 部分破坏拆卸模式下拆卸规划[J]. 南京航空航天大学学报, 2014, 46 (6): 945- 950
CHEN Xu-ling, LOU Pei-huang Product disassembly sequence planning based on partial destruction made[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2014, 46 (6): 945- 950
doi: 10.3969/j.issn.1005-2615.2014.06.019
[22]   WANG Y H, PENG Q J, ZHAN J. Selective disassembly planning for the end-of-life product [C]// Complex Systems Engineering and Development-Proceedings of the 27th CIRP Design Conference. Canada: Elsevier BV, 2017, 60: 512-517.
[23]   ZHOU Z Q, DAI G H, ZHANG X Y, et al Research of partial destructive based selective disassembly sequence planning[J]. The Open Mechanical Engineering Journal, 2015, 9 (1): 605- 612
doi: 10.2174/1874155X01509010605
[24]   LIANG C, FU Z, JOHN W S Value recovery from end-of-use products facilitated by automated dismantling planning[J]. Clean Technologies and Environmental Policy, 2017, 19 (7): 1867- 1882
doi: 10.1007/s10098-017-1370-9
[25]   魏伟杰, 张华, 江志刚, 等 零件分类条件下废旧产品拆卸序列多目标优化[J]. 现代制造工程, 2018, (9): 127- 133
WEI Wei-jie, ZHANG Hua, JIANG Zhi-gang, et al. Multi-objective optimization method for disassembly sequence of used product under the condition of parts classification[J]. Modern Manufacturing Engineering, 2018, (9): 127- 133
[26]   SRINIVASAN H, GADH R. Selective disassembly: representation and comparative analysis of wave propagation abstractions in sequence planning [C]// IEEE International Symposium on Assembly and Task Planning. New York: IEEE, 1999: 129-134.
[27]   DONG T, ZHANG L, TONG R, et al A hierarchical approach to disassembly sequence planning for mechanical product[J]. International Journal of Advanced Manufacturing Technology, 2006, 30 (5/6): 507- 520
[28]   LAMBERT A J D Determining optimum disassembly sequences in electronic equipment[J]. Computers and Industrial Engineering, 2002, 43 (3): 553- 575
doi: 10.1016/S0360-8352(02)00125-0
[29]   TANG Y, ZHOU M C, GAO M Fuzzy-Petri-net based disassembly planning considering human factors[J]. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 2006, 36 (4): 718- 726
doi: 10.1109/TSMCA.2005.853508
[30]   杨得玉, 徐志刚, 朱建峰, 等 考虑产品故障特征的目标选择性拆卸序列规划[J]. 哈尔滨工业大学学报, 2019, 51 (7): 160- 170
YANG De-yu, XU Zhi-gang, ZHU Jian-feng, et al Objective selective disassembly sequence planning considered product fault features[J]. Journal of Harbin Institute of Technology, 2019, 51 (7): 160- 170
doi: 10.11918/j.issn.0367-6234.201807074
[31]   徐进, 张树有, 费少梅 基于自适应粒子群的产品再制造拆卸规划[J]. 浙江大学学报: 工学版, 2011, 45 (10): 1746- 1752
XU Jin, ZHANG Shu-you, FEI Shao-mei, et al Product remanufacture disassembly planning based on adaptive particle swarm optimization algorithm[J]. Journal of Zhejiang University: Engineering Science, 2011, 45 (10): 1746- 1752
[32]   SMITH S S, CHEN W H Rule-based recursive selective disassembly sequence planning for green design[J]. Advanced Engineering Informatics, 2011, 25 (1): 77- 87
doi: 10.1016/j.aei.2010.03.002
[33]   张秀芬, 蔚刚, 刘行 支持再制造设计的产品失效模式信息传递模型[J]. 机械工程学报, 2017, 53 (3): 201- 208
ZHANG Xiu-fen, WEI Gang, LIU Xing Product failure mode information transfer polychromatic model for remanufacture[J]. Journal of Mechanical Engineering, 2017, 53 (3): 201- 208
doi: 10.3901/JME.2017.03.201
[34]   杜彦斌, 廖兰 基于失效特征的机械零部件可再制造度评价方法[J]. 计算机集成制造系统, 2015, 21 (1): 135- 142
DU Yan-bin, LIAO Lan Remanufacturability evaluation method of mechanical parts based on failure features[J]. Computer Integrated Manufacturing Systems, 2015, 21 (1): 135- 142
[35]   维·维·巴伏洛夫, 李宗斌, 高峰 多色集合在加工系统建模与分析时的应用[J]. 西安交通大学学报, 2001, 35 (9): 926- 929
PAVLOV V V, LI Zong-bin, GAO Feng Application of the polychromatic sets for modeling and analysis of manufacturing system[J]. Journal of Xi’an Jiaotong University, 2001, 35 (9): 926- 929
doi: 10.3321/j.issn:0253-987X.2001.09.011
[36]   REN Y, ZHANG C, ZHAO F, et al An asynchronous parallel disassembly planning based on genetic algorithm[J]. European Journal of Operational Research, 2018, 269 (2): 647- 660
doi: 10.1016/j.ejor.2018.01.055
[37]   张则强, 李六柯, 蔡宁, 等 随机型拆卸线平衡问题的局部邻域遗传算法[J]. 计算机集成制造系统, 2019, 25 (3): 607- 618
ZHANG Ze-qiang, LI Liu-ke, CAI Ning, et al Local neighborhood genetic algorithm for stochastic disassembly line balancing problem[J]. Computer Integrated Manufacturing Systems, 2019, 25 (3): 607- 618
[38]   MORADNOURI A, VAKILIAN M, FRADMANESH M, et al Optimal design of flux diverter using genetic algorithm for axial short circuit force reduction in HTS transformers[J]. IEEE Transactions on Applied Superconductivity, 2019, 99 (1): 1- 8
[39]   田永廷, 张秀芬, 徐劲芳, 等 支持再制造的选择性并行拆卸序列规划方法[J]. 计算机辅助设计与图形学学报, 2018, 30 (3): 531- 539
TIAN Yong-ting, ZHANG Xiu-fen, XU jin-fang, et al Selective parallel disassembly sequence planning method for remanufacturing[J]. Journal of Computer-Aided Design and Computer Graphics, 2018, 30 (3): 531- 539
doi: 10.3724/SP.J.1089.2018.16317
[1] Jun-xia JIANG,Xin-yuan ZHANG,Bang-ming TAO,Qun DONG. Design and experiment of remote handling motor replacement device based on passive compliant mechanism[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 855-865.
[2] Tian-ze HAO,Hua-ping XIAO,Shu-hai LIU,Chao ZHANG,Hao MA. Research status of integrated intelligent soft robots[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 229-243.
[3] Da-peng BAI,Bin ZHANG,Hao-cen HONG,Yang LI,Qing-hua JI,Hua-yong YANG. Biological 3D printer and topography detection of printing model[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 289-298.
[4] Sarina,Shu-you ZHANG,Le-miao QIU,Li-chun ZHANG. Schematic design of mechanism system based on transmission affordance evaluation[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2179-2189.
[5] Yun-kai GAO,Chao MA,Zhe LIU,Ya-nan XU. Stress-based topology optimization based on global measure of distort energy density[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2169-2178.
[6] Kai-yuan SU,Zhi-gang XU,Jian-feng ZHU,Wei-min LIU. Dismantling equipment design for scrap product based on Petri net[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1795-1804.
[7] Hao CHEN,Xin-jie WANG,Jiong WANG,Zhan-wen XI,Yun CAO. Optimization and design of micro-electro-thermal actuator based on Kriging model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1490-1496.
[8] Yun-qing HU,Qing-ying QIU,Xiu YU,Jian-wei WU. Semi-supervised patent text classification method based on improved Tri-training algorithm[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 331-339.
[9] Peng ZHANG,Xiao-jian LIU,Shu-you ZHANG,Le-miao QIU,Guo-dong YI. Sparse hybrid uncertain variable optimization method and application[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 435-443.
[10] LI Te,Rui Zhi yuan,LEI Chun li,GUO Jun feng,HU Chi bing. Simulation of thermal characteristics of high speed spindle considering air gap variation[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 941-948.
[11] JI Yu,QIU Qing ying,FENG Pei en,HUANG Hao. Extraction and utilization of design knowledge in international patent classification[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 412-418.
[12] LV Mao yin, XU Yue tong, YE Guo yun,YAO Xin hua. Optimal design of asymmetric steering mechanism based on quantum behaved particle swarm optimization algorithm[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 218-223.
[13] CHEN Shi, YANG Zhi yuan, SUN Ling yun, LOU Yun. Research on design knowledge analytical method during sketching —— combining acoustic energy feature and creative segment theory[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2073-2082.
[14] WU Chen-rui, ZHANG Shu-you, LIU Xiao-jian. Product scheme design evaluation based on coupling network analysis of cluster parameters[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1495-1502.
[15] CHEN Jin, QING Fei, PANG Xiao-ping. Optimal design of backhoe hydraulic excavator working device based on synthesis digging[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(9): 1654-1660.