Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Mechanical Engineering     
Simulation of thermal characteristics of high speed spindle considering air gap variation
LI Te,Rui Zhi yuan,LEI Chun li,GUO Jun feng,HU Chi bing
1. Key Laboratory of Digital Manufacturing Technology and Application,The Ministry of Education.
Lanzhou University of Technolagy,Lanzhou 730050,China;
2.College of MechanoElectronic Engineering,Lanzhou University of Technology, Lanzhou 730050,China
Download:   PDF(1169KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A viewpoint on the centrifugal expansion and thermal expansion which would affect the convection heat transfer between stator and rotor of high speed spindle was proposed to solve the problem that the thermal characteristics caused by structure variation of high speed spindle would be changed under high rotation speed. Based on the theory of elastic mechanics, radical expansion and air gap changes which caused by the radical expansion were calculated considering the two expansions acting on the stator and rotor of spindle. Variation rules of air gap and convection heat transfer coefficient that affected by the centrifugal force were obtained according to the convection heat transfer theory. The calculation results show that the air gap length decreases with the expansion of the rotor, and the reduction is 377% of the design value. The Taylor number increases with the increase of the rotating speed, while decreases with the increase of the air gap length. The heat transfer coefficient of air gap decreases with the increase of air gap length, so that the heat transfer between the stator and rotor is restrained. Results show that  the temperature rises and thermal displacement can be  significantly reduced if the convection heat transfer coefficient and the cooling power can be  properly promoted, then the machining accuracy can be improved.



Published: 14 January 2017
CLC:     
  TH 122  
  TH 133  
Cite this article:

LI Te,Rui Zhi yuan,LEI Chun li,GUO Jun feng,HU Chi bing. Simulation of thermal characteristics of high speed spindle considering air gap variation. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(5): 941-948.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008973X.2016.05.018     OR     http://www.zjujournals.com/eng/Y2016/V50/I5/941


考虑气隙变化的高速电主轴热特性仿真

为了解决电主轴高速旋转时结构变化引起的自身热特性改变的问题,提出离心膨胀和热膨胀会影响电主轴内定、转子间对流换热的观点.基于弹性力学理论,计算电主轴定、转子受离心力和热载荷而产生的径向膨胀量及由此导致的气隙变化量;根据对流换热理论得出离心力影响下泰勒数随转速和气隙长度的变化规律以及对流换热系数的变化规律.计算发现,气隙长度随定、转子的膨胀而减小,该减小量占设计值的377%;泰勒数随转速升高而增大,随气隙长度增大而减小;对流换热系数随气隙长度增加而降低,使得定、转子间传热受到抑制.结果表明,若能提高气隙间对流换热系数,适当提升油水冷却功率,能够大幅度降低主轴转子温升和热位移,提高加工精度.

[1] BOSSMANNS B, TU J F. A thermal model for high speed motorized spindles[J]. International Journal of Machine Tools and Manufacture, 1999, 39(9): 1345-1366.
[2] BOSSMANNS B, TU J F. A power flow model for high speed motorized spindles—heat generation characterization [J]. Journal of Manufacturing Science and Engineering, 2001, 123(3): 494-505.
[3] JORGENSEN B R, SHIN Y C. Dynamics of machine tool spindle/bearing systems under thermal growth[J]. Journal of Tribology, 1997, 119(4): 875-882.
[4] LI H, SHIN Y C. Integrated dynamic thermomechanical modeling of high speed spindles, part 1: model development[J]. Journal of Manufacturing Science and Engineering, 2004, 126(1): 148-158.
[5] 陈小安,张朋,合烨,等. 高速电主轴功率流模型与热态特性研究[J]. 农业机械学报,2013,44(9):250-254.
CHEN Xiaoan, ZHANG Peng, HE Ye, et al. Power flow model of high speed motorized spindles and its thermal characteristics [J]. Transactions of the Chinese Society for Agricultural Machinery, 2013,(44)09:250-254.
[6] MIN X, SHUYUN J, YING C. An improved thermal model for machine tool bearings[J].  International Journal of Machine Tools and Manufacture, 2007, 47(1): 53-62.
[7] HOWEY D A, CHILDS P R N, Holmes A S. Airgap convection in rotating electrical machines[J]. IEEE Transactions on Industrial Electronics, 2012, 59(3): 1367-1375.
[8] YANG Z, SUN M, LI W, et al. Modified Elman network for thermal deformation compensation modeling in machine tools[J]. The International Journal of Advanced Manufacturing Technology, 2011, 54(5/8): 669-676.
[9] LI D, FENG P, ZHANG J, et al. Calculation method of convective heat transfer coefficients for thermal simulation of a spindle system based on RBF neural network[J]. The International Journal of Advanced Manufacturing Technology, 2014, 70(5/8): 1445-1454.
[10] 王保民,胡赤兵,孙建仁,等. 高速电主轴热态特性的ANSYS仿真分析[J]. 兰州理工大学报,2009,(35)1:28-31.
WANG Baomin, HU Chibing, SUN Jianren, et al, Simulation analysis of thermal characteristics of highspeed motorized spindle by using ANSYS[J]. Journal of Lanzhou university of technology, 2009,35(1):28-31.
[11] HAITAO Z, JIANGUO Y, JINHUA S. Simulation of thermal behavior of a CNC machine tool spindle[J]. International Journal of Machine Tools and Manufacture, 2007, 47(6): 1003-1010.
[12] ABELE E, ALTINTAS Y, BRECHER C. Machine tool spindle units[J]. CIRP AnnalsManufacturing Technology, 2010, 59(2): 781-802.
[13] CHEN J S, HSU W Y. Characterizations and models for the thermal growth of a motorized high speed spindle[J]. International Journal of Machine Tools and Manufacture, 2003, 43(11): 1163-1170.
[14] 王保民, 胡赤兵, 邬再新, 等. 高速电主轴定转子的气隙变化及影响因素[J]. 兰州理工大学学报, 2009, 34(6): 40-42.
WANG Baomin, HU Chibing, WU Zaixin, et al. Analysis of variation in airgap between rotor and stator in highspeed motorized spindle [J]. Journal of Lanzhou university of technology, 2009, 34(6): 40-42.
[15] Chang C F, Chen J J. Vibration monitoring of motorized spindles using spectral analysis techniques[J]. Mechatronics, 2009, 19(5): 726-734.
[16] GNTHER P, DREIER F, PFISTER T, et al. Measurement of radial expansion and tumbling motion of a highspeed rotor using an optical sensor system[J]. Mechanical Systems and Signal Processing, 2011, 25(1): 319-330.
[17] 徐秉业,刘信声.应用弹塑性力学[M].北京,清华大学出版社,1995:203205,237-241.
[18] NAKAJIMA K. Thermal contact resistance between balls and rings of a bearing under axial, radial, and combined loads [J]. Journal of thermophysics and heat transfer, 1995, 9(1): 88-95.
[19] JIANG S, MAO H. Investigation of variable optimum preload for a machine tool spindle[J]. International Journal of Machine Tools and Manufacture, 2010, 50(1): 1928.
[20] 王保民. 电主轴热态特性对轴承—转子系统动力学特性的影响研究[D].兰州:兰州理工大学,2009.
WANG Baomin. Study on thermal characteristics of highspeed motorized spindle and its effects on dynamic characteristics of ball bearingrotor system[D]. Lanzhou: Lanzhou university of technology, 2009:18-33.
[21] STATON D A, CAVAGNINO A. Convection heat transfer and flow calculations suitable for electric machines thermal models[J]. IEEE Transactions on Industrial Electronics, 2008, 55(10): 3509-3516.
[22] 张丽秀. 电主轴单元电磁特性及控制策略改善研究[D].大连:大连理工大学,2012:88-90.

[1] DONG Kai, LAI Jun ying, QIAN Xiao qian, ZHAN Shu lin, RUAN Fang. Energy efficiency of residential buildings with horizontal external shading in hot summer and cold winter zone[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1431-1437.
[2] LI Jia qi, FAN Li wu, YU Zi tao. Boiling heat transfer characteristics during quench cooling on superhydrophilic surface[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1493-1498.
[3] CHIANG Yen ming, ZHANG Jian quan, MING Yan. Flood forecasting by ensemble neural networks[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1471-1478.
[4] ZHONG Wei, PENG Liang, ZHOU Yong gang, XU Jian, CONG Fei yun. Slagging diagnosis of boiler based on wavelet packet analysis and support vector machine[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1499-1506.
[5] XIA Yu feng, REN Li, YE Cai hong, WANG Li. Multi-objective optimization of locators layout of reinforced panel based on RSM[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1600-1607.
[6] LI Lin yu, WU Zhang hua, YU Guo yao, DAI Wei, LUO Er cang.
Experimental investigation on electroacoustic conversion characteristic of linear compressor
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1529-1536.
[7] QU Wei wei, TANG Wei, BI Yun bo, LI Shao bo, LUO Shui jun. Pre-joining processes plan to avoid forced assemblies and improve efficiency[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1561-1569.
[8] HU Xiao dong, GU Lin yi, ZHANG Fan meng. High-speed on/off valves applied in digital displacement motor[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1551-1560.
[9] YANG Shu, LIU Guo ping, QI Chang, WANG Da zhi. Simulation and optimization for anti-shock performances of graded metal hollow sphere foam structure[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1593-1599.
[10] YANG Zhang, TONG Gen shu, ZHANG Lei. Effective Rigidity of two one-side stiffeners arranged symmetrically[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1446-1455.
[11] JIANG Xiang, TONG Gen shu, ZHANG Lei. Experiments on fire-resistance performance of fire-resistant steel-concrete composite beams[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1463-1470.
[12] SHAN Hua feng, XIA Tang dai, YU Feng, HU Jun hua,PAN Jin long. Buckling stability analysis on critical load of underpinning pile for excavation beneath existing building[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1425-1430.
[13] GU Tian lai, ZHANG Shuai, ZHENG Yao. Back pressure characteristics of jaws inlet with constant-area isolator[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(7): 1418-1424.
[14] CHENG Shi wei, LU Yu hua, CAI Hong gang. Mobile device based eye tracking technology[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1160-1166.
[15] ZHENG Cheng zhi, GAO Jin liang, HE Wen jie. Leakage discharge analysis model based on FastICA algorithm[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1031-1039.